GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (9)
  • 1
    In: Cancer Immunology Research, American Association for Cancer Research (AACR), Vol. 3, No. 8 ( 2015-08-01), p. 871-880
    Abstract: The killer-cell Ig-like receptor (KIR) 2DL4 (CD158d) acts as a receptor for human leukocyte antigen (HLA)-G and is expressed on almost all human natural killer (NK) cells. The expression and function of KIR2DL4 in other hematopoietic cells is poorly understood. Here, we focused on human mast cells, which exhibit cytotoxic activity similar to that of NK cells. KIR2DL4 was detected in all examined human cultured mast cells established from peripheral blood derived from healthy volunteers (PB-mast), the human mast cell line LAD2, and human nonneoplastic mast cells, including those on pathologic specimens. An agonistic antibody against KIR2DL4 decreased KIT-mediated and IgE-triggered responses, and enhanced the granzyme B production by PB-mast and LAD2 cells, by activating Src homology 2–containing protein tyrosine phosphatase (SHP-2). Next, we performed a coculture assay between LAD2 cells and the HLA-G+ cancer cells, MCF-7 and JEG-3, and showed that KIR2DL4 on LAD2 cells enhanced MMP-9 production and the invasive activity of both cell lines via HLA-G. Immunohistochemical analysis revealed that the direct interaction between HLA-G+ breast cancer cells and KIR2DL4+ tissue mast cells (observed in 12 of 36 cases; 33.3%) was statistically correlated with the presence of lymph node metastasis or lymph-vascular invasion (observed in 11 of 12 cases; 91.7%; χ2 = 7.439; P & lt; 0.01; degrees of freedom, 1) in the clinical samples. These findings suggest that the KIR2DL4 on human mast cells facilitates HLA-G–expressing cancer invasion and the subsequent metastasis. Cancer Immunol Res; 3(8); 871–80. ©2015 AACR.
    Type of Medium: Online Resource
    ISSN: 2326-6066 , 2326-6074
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2015
    detail.hit.zdb_id: 2732517-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2015
    In:  Cancer Research Vol. 75, No. 15_Supplement ( 2015-08-01), p. 2357-2357
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 75, No. 15_Supplement ( 2015-08-01), p. 2357-2357
    Abstract: Background Antibody therapy such as trastuzumab is imperative for HER2-positive breast cancer patients. Although its antitumor action is not completely understood, the role of immune cells in antibody therapy is indispensable. Neuropilin-1 (NRP1) in monocytes induces high in vitro anti-tumor activity. Here, we showed the role of NRP1 in monocytes in HER2-positive breast cancer, using a tumor-bearing NOD/Shi-SCID, IL-2Rγnull(NOG) mouse model. Experimental procedures A tumor-bearing NOG mouse was made using BT474-sGL containing transfected HER2-positive human breast cancer cell lines that secreted Gaussia luciferase (Gluc). Tumor volumes were measured, using Gluc relative light units (RLUs), in 5 treatment arms (Table). Each arm was allocated 5 NOG mice, randomized by body weight and RLUs. Cytokines released into culture supernatants were determined using human Bio- Plex Cytokine Assay Kits (Bio-Rad, Hercules, CA), according to the manufacturer's instructions. mRNA was measured using TAQMAN array (LifeTechnologies, Carlsbad, CA) gene expression studies, according to the manufacturer's instructions. Results Knockdown of NRP-1 in monocytes impaired anti-tumor activity: After 2 cycles of treatment, RLUs increased significantly from baseline in Arm E, compared with those in Arm D. There was no significant difference between Arms B and E. Knockdown of NRP-1 in monocytes impaired migration activity: Staining for human-specific CD45 revealed that the tumor infiltrating lymphocytes of Arm E decreased compared with those of Arm D; CD45 mRNA was significantly lower in Arm E than in Arm D. Chemokine secretion is regulated by NRP-1: Tumor chemokine (e.g., IP-10, MIP-1α, MIP-1β and RANTES) secretion was significantly decreased due to knockdown of NRP-1. Conclusion Our data suggest that NRP-1-expressing immune cells initiate anti-tumor activity via migration and chemokine secretion. Summary of resultsArmHumanizedTrastuzumabNRP1 KD% change RLU (mean ± SEM)CD45 mRNA relative quantities (mean ± SEM)IP-10 pg/mL (mean ± SEM)MIP-1α pg/mL (mean ± SEM)MIP-1β pg/mL (mean ± SEM)RANTES pg/mL (mean ± SEM)ANoNoNo495 ± 76.00.75 ± 0.3822.2 ± 6.351.16 ± 0.013.51 ± 3.515.36 ± 2.68BNoYesNo49.6 ± 43.20.50 ± 0.2617.1 ± 13.91.20 ± 0.275.75 ± 5.757.87 ± 4.40CYesNoNo566 ± 145504 ± 2421361 ± 4538.31 ± 3.1582.9 ± 43.659.4 ± 42.6DYesYesNo-45.7 ± 12.91650 ± 4055880 ± 26006.43 ± 1.3767.0 ± 13.9171 ± 35.4EYesYesYes46.2 ± 15.4307 ± 121285 ± 73.21.60 ± 0.3010.7 ± 2.3229.7 ± 9.69p value of D vs. Ep & lt; 0.01p = 0.04p = 0.03p & lt; 0.01p & lt; 0.01p & lt; 0.01 Citation Format: Kosuke Kawaguchi, Eiji Suzuki, Isao Kii, Tatsuki R. Kataoka, Masahiro Hirata, Hironori Haga, Masatoshi Hagiwara, Masakazu Toi. Knockdown of neuropilin-1 in monocytes impaired lymphocyte migration and anti-tumor activity in a humanized mouse model. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 2357. doi:10.1158/1538-7445.AM2015-2357
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2015
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 79, No. 13_Supplement ( 2019-07-01), p. 741-741
    Abstract: [Introduction] Non-malignant proliferative lesions in the breast have been implicated in the development of invasive breast cancer. Previous studies showed that adjacent atypical proliferative lesions and breast cancers shared common genetic alterations, suggesting that these evolved from the same ancestral cell. However, the clonal structure of atypical proliferative lesions and their clonal dynamics during progression to cancer are poorly understood. In this study, we compared genetic profiles of normal ducts, non-malignant proliferative lesions and cancers in the same patients to illustrate the clonal evolution of cancer from a non-malignant epithelial cell. [Methods] Multiple samples were collected from different proliferative lesions within the cancer-borne breast, including invasive cancers, using micro-dissection from formalin-fixed, paraffin-embedded surgical specimens. Somatic mutations and copy number alterations (CNAs) were then evaluated by whole exome sequencing. [Results] A total of 39 samples from 6 premenopausal females carrying estrogen receptor-positive cancers were analyzed, where the samples were obtained from normal ducts (N = 5), non-malignant proliferative lesions (N = 9), and non-invasive (N = 21) and invasive (N = 4) cancers. The number of somatic mutations per sample was ranging from 1 to 311 and increased with pathological disease progression. Two cases with bilateral cancers had a pathogenic germline mutation of either BRCA2 or TP53, where no somatic mutations or CNAs were shared by individual proliferative lesions, suggesting multifocal independent cancerous evolutions. By contrast, in the remaining four unilateral cases, no pathogenic germline mutations were detected, but all proliferative lesions, which were separated by a distance of 7-33 mm, shared one or more driver alterations, such as an AKT1 mutation (UID: KU01), a GATA3 mutation (UID: KU03 and KU06), a CBFB mutation (UID: KU06) and concurrent 1q gain and 16q loss (UID: KU02, KU03 and KU06), while harboring private mutations/CNAs of their own. The analysis of phylogenic trees based on the number of shared mutations predicted an early origin of these founder mutations, which frequently predated decades before the onset of cancer. [Conclusions] Early breast cancer development is thought to be shaped by a simultaneous evolution of multiple precancerous clones. It may be multi-focally initiated by a germline mutation, frequently terminated in bilateral cancers. By contrast, in unilateral cases, cancer clones might be derived from a common ancestral clone, which has acquired a driver founder mutation long before the onset of cancer, and undergo independent evolution, giving rise to multiple proliferative lesions, from which invasive cancer finally evolves. Our findings provide unique insight into the early development of breast cancer. Citation Format: Tomomi Nishimura, Kenichi Yoshida, Yukiko Kawata, Yasuhide Takeuchi, Nobuyuki Kakiuchi, Yusuke Shiozawa, Kosuke Aoki, Masahiro Hirata, Tatsuki R. Kataoka, Takaki Sakurai, Satoko Baba, Yuichi Shiraishi, Kenichi Chiba, Kengo Takeuchi, Hironori Haga, Satoru Miyano, Masakazu Toi, Seishi Ogawa. Clonal evolution of non-malignant proliferative lesions into breast cancers [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 741.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 4_Supplement ( 2020-02-15), p. P4-05-15-P4-05-15
    Abstract: [Introduction] Proliferative lesions in the breast have been implicated in the development of invasive breast cancer. Previous studies showed that atypical proliferative lesions and adjacent breast cancers shared common genetic alterations, suggesting that these evolved from the same ancestral cell. However, the clonal structure of atypical proliferative lesions and their clonal dynamics during progression to cancer are poorly understood. In this study, we compared genetic profiles of proliferative lesions and cancer tissues from the same patients to illustrate the clonal evolution of cancer from a non-malignant epithelial cell. [Methods] Multiple samples were collected from various lesions with different disease-level located in the cancer-borne breast, including invasive cancers, using micro-dissection from formalin-fixed, paraffin-embedded surgical specimens. Somatic mutations and copy number alterations (CNAs) were then evaluated by whole exome sequencing. [Results] We analyzed a total of 39 samples from 6 premenopausal females carrying estrogen receptor-positive cancers, where the samples were obtained from non-atypical (N = 1) and atypical (N = 8) proliferative lesions, and non-invasive (N = 21) and invasive (N = 4) cancers. The number of somatic mutations per sample ranged from 2 to 311 and increased with disease progression. Two cases with bilateral cancers had a pathogenic germline mutation of either BRCA2 or TP53, where no somatic mutations or CNAs were shared by individual proliferative lesions, suggesting multifocal independent cancerous evolutions. By contrast, in the remaining four unilateral cases, no pathogenic germline mutations were detected, but all proliferative lesions and cancers, which were separated by a distance of 7- 33 mm, shared one or more driver alterations, such as an AKT1 mutation (UID: KU01), a GATA3 mutation (UID: KU03 and KU06), a CBFB mutation (UID: KU06) and concurrent 1q gain and 16q loss (UID: KU02, KU03 and KU06), while harboring private mutations/CNAs of their own. The phylogenetic analysis based on the number of shared mutations predicted an early origin of these founder genetic alterations, which frequently predated decades before the onset of cancer. [Conclusions] Our results suggest that early breast cancer development is shaped by the evolution of multiple precancerous clones. In hereditary cases, this process is thought to be substantially promoted multi-focally within the entire breasts, due to innate genomic instability in each mammary epithelial cell for pathogenic germline mutations. By contrast, in sporadic cases, the ancestral cell which has acquired a founder genetic alteration expands macroscopically long before the onset of cancer, most likely in early adolescent. These expanded clones work as the niche predisposed to additional mutations, in which branching evolution occurs multi-focally and raises up multiple proliferative lesions, from which invasive cancer finally evolves. Our findings provide unique insight into the early development of breast cancer. Citation Format: Tomomi Nishimura, Kenichi Yoshida, Nobuyuki Kakiuchi, Yasuhide Takeuchi, Yukiko Kawata, Hirona Maeda, Yusuke Shiozawa, Kosuke Aoki, Masahiro Hirata, Tatsuki R Kataoka, Takaki Sakurai, Satoko Baba, Yuichi Shiraishi, Kenichi Chiba, Kengo Takeuchi, Hironori Haga, Satoru Miyano, Masakazu Toi, Seishi Ogawa. Clonal evolution of proliferative lesions into breast cancers [abstract]. In: Proceedings of the 2019 San Antonio Breast Cancer Symposium; 2019 Dec 10-14; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2020;80(4 Suppl):Abstract nr P4-05-15.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 12_Supplement ( 2022-06-15), p. 6085-6085
    Abstract: [Introduction] Previous studies suggested that breast cancers (BCs) and some adjacent atypical proliferative lesions evolved from the same ancestral cell. However, the clonal structure of normal epithelial cells and their clonal history during evolution to cancer are poorly understood. In this study, we analyzed genetic profiles of normal epithelia and proliferative lesions in the cancer-borne breast to illustrate the clonal evolution of cancer from a normal epithelial cell. [Methods] Single cell-derived normal epithelial organoids (n=47) were established from breast milk of 4 healthy women aged 22-36 and surgical specimens of 15 BC patients aged 29-83 to evaluate somatic mutation rate. Multiple normal lobules or proliferative lesions together with cancer cells were collected using laser-capture micro-dissection (LCM) from fresh frozen (n=3) or formalin-fixed paraffin-embedded (n=6) surgical specimens in 9 premenopausal BC patients. Somatic mutations and copy number alterations were evaluated using whole-genome sequencing. [Results] On the basis of single cell-derived mammary gland-derived organoids, somatic mutations increased in mammary gland cells at a constant rate of 19.4/genome/year before menopause, which then decreased to 6.9/genome/year after menopause. Parity was negatively associated with mutation number (-49.3 per life birth). In total, we analyzed 113 LCM samples, including those from 66 normal lobules, 28 proliferative lesions, and 14 non-invasive and 5 invasive cancer samples. Phylogenetic analysis showed that most of the neighboring normal lobules (53/66) from 3 BC patients shared no somatic mutations with each other and therefore were clonally independent. In other 13 normal lobules, shared mutations including a PIK3CA mutation were observed across multiple adjacent samples, although they were still confined to & lt;10 mm regions. By contrast, we found a large expansion of proliferative lesions sharing a substantial number of somatic mutations with cancer in 5 out of the 6 remaining BC cases. They were expanded over a distance of 25-85 mm, sharing tens to hundreds of mutations including those in BC-related driver genes, such as PIK3CA, AKT1, GATA3, CBFB and PTEN. Of interest, Tumors in 4 out of these 5 cases was Luminal-A type and characterized in common by the presence of 1q gain and 16q loss (1q+/16q-) in both cancer and proliferative lesions. Phylogenetic analysis adapted with the mutation rate in normal cells predicted that 1q+/16q- had been acquired during adolescence to mid-20s, where the clonal expansion had occurred years to decades before the onset of cancer. [Conclusions] Our results suggest that in some BC cases, particularly in those with 1q+/16q-, the clones with the founder driver mutations expanded macroscopically long before the onset of cancer, in which further clonal evolutions recursively occur multi-focally, giving rise to multiple proliferative lesions and ultimately, i nvasive cancers. Citation Format: Tomomi Nishimura, Nobuyuki Kakiuchi, Kenichi Yoshida, Yasuhide Takeuchi, Hirona Maeda, Yusuke Shiozawa, Masahiro M. Nakagawa, Ryunosuke Saiki, Yotaro Ochi, Tomonori Hirano, Yukiko Kawata, Kosuke Aoki, Masahiro Hirata, Tatsuki R. Kataoka, Takaki Sakurai, Satoko Baba, Yuichi Shiraishi, Kenichi Chiba, Kengo Takeuchi, Hironori Haga, Satoru Miyano, Masakazu Toi, Seishi Ogawa. Clonal evolution of mammary epithelial cells into breast cancers [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 6085.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 78, No. 13_Supplement ( 2018-07-01), p. 3389-3389
    Abstract: [Introduction] Non-malignant proliferative lesions in the breast have been implicated in the development of invasive breast cancer. Previous studies showed that adjacent atypical proliferative lesions and breast cancers shared common genetic alterations, suggesting that these evolved from the same ancestral cell. However, the clonal structure of atypical proliferative lesions and their clonal dynamics during progression to cancer are poorly understood. In this study, we compared genetic profiles of normal ducts, non-malignant proliferative lesions and cancers in the same patients to illustrate the clonal evolution of cancer from a non-malignant epithelial cell. [Methods] Multiple samples were collected from diff erent atypical proliferative lesions within the cancer-borne breast, including invasive cancers, using micro-dissection from formalin-fixed, paraffin-embedded surgical specimens. Somatic mutations and copy number alterations (CNAs) were then evaluated by whole exome sequencing. [Results] A total of 34 samples from 5 premenopausal females carrying estrogen receptor-positive cancers were analyzed, where the samples were obtained from normal ducts (N = 6), non-atypical (N = 1) and atypical (N = 8) proliferative lesions, and invasive (N = 3) and non-invasive (N = 16) cancers. The number of somatic mutations per sample was ranging from 1 to 276 and increased with an elevation of atypical-level. Two cases with bilateral cancers had a pathogenic germline mutation of either BRCA2 and TP53, where no somatic mutations or CNAs were shared by individual proliferative lesions, suggesting multifocal independent cancerous evolutions. By contrast, in the remaining three unilateral cases, no pathogenic germline mutations were detected, but all proliferative lesions, which were separated by a distance of 7-25 mm, shared one or more driver alterations, such as an AKT1 mutation (UID: KU01), concurrent 1q gain and 16q loss (der(1;16)) (UID: KU02), and a GATA3 mutation and der(1;16) (UID: KU03), while harboring private mutations/CNAs of their own. The analysis of phylogenic trees based on the number of shared mutations predicted an early origin of these founder mutations, which frequently predated decades before the onset of cancer. [Conclusions] Early breast cancer development is thought to be shaped by the simultaneous evolution of multiple precancerous clones. It may be multi-focally initiated by a germline mutation, frequently terminated in bilateral cancers. Otherwise, in unilateral cases, cancer clones might be derived from a common ancestral clone, which has acquired a driver founder mutation long before the onset of cancer, and undergo independent evolution, giving rise to multiple proliferative lesions, from which invasive cancer finally evolves. Our findings provide unique insight into the early development of breast cancer. Citation Format: Tomomi Nishimura, Kenichi Yoshida, Yukiko Kawata, Yasuhide Takeuchi, Nobuyuki Kakiuchi, Yusuke Shiozawa, Kosuke Aoki, Masahiro Hirata, Tatsuki R. Kataoka, Takaki Sakurai, Yuichi Shiraishi, Kenichi Chiba, Kengo Takeuchi, Hironori Haga, Satoru Miyano, Masakazu Toi, Seishi Ogawa. Clonal evolution of atypical proliferative lesions into breast cancers [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 3389.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 5_Supplement ( 2023-03-01), p. P5-13-04-P5-13-04
    Abstract: [Introduction] Proliferative lesions in the breast have been implicated in the development of breast cancer. Previous studies showed that some proliferative lesions and adjacent breast cancers shared common genetic alterations, suggesting that these originated from the same ancestral cell. However, the clonal structure of normal epithelia and their clonal history during evolution to cancer are poorly understood. In this study, we analyzed genetic profiles of normal epithelia and proliferative lesions in the cancer-borne breast to illustrate the clonal evolution of cancer from a normal epithelial cell. [Methods] Single cell-derived organoids (n=47) were established from breast milk of 4 healthy women aged 22–36 and normal breast tissue of 15 breast cancer patients aged 29–83 to evaluate somatic mutation rate in normal epithelial cells. Multiple normal lobules and proliferative lesions together with cancer lesions were collected using laser-capture micro-dissection (LCM) from fresh frozen (n=3) or formalin-fixed paraffin-embedded (n=5) surgical specimens in 9 premenopausal breast cancer patients. Somatic mutations and copy number alterations were evaluated using whole-genome sequencing. [Results] The mutation profile of single cell-derived organoids suggests that somatic mutations accumulate in normal mammary epithelial cells at a constant rate of 19.4/genome/year before menopause, and the mutation rate decreases to 6.9/genome/year after menopause. Parity was negatively associated with mutation number (-49.3 per life birth). In total, we analyzed 143 LCM samples, including those from 72 normal lobules, 43 proliferative lesions, and 19 non-invasive and 9 invasive cancer samples. Five cases showed a large expansion of proliferative lesions sharing a substantial number of somatic mutations with cancer. These lesions expanded over a distance of 35-90 mm, sharing tens to hundreds of mutations including those in breast cancer-related driver genes, such as PIK3CA, AKT1, GATA3, CBFB and PTEN, while harboring private mutations or copy number alterations of their own. Of interest, the cancers in 4 out of these 5 cases was luminal-A type invasive ducal carcinoma or ER-positive HER2-negative ductal carcinoma in situ, and characterized in common by the presence of der(1;16), concurrent whole-arm 1q gain and 16q loss, in both cancer and proliferative lesions. Phylogenetic analysis adapted with the mutation rate in normal cells predicted that der(1;16) had been acquired between puberty and early 20’s, and the common ancestors of non-cancerous and cancerous lesions emerged by early 30’s, & gt;10 years earlier than at the time of cancer diagnosis. By contrast, analysis of non-cancerous lobules unrelated to cancer showed that der(1;16)-negative non-cancer clones that had emerged after puberty stayed within a single lobule or spatially confined to adjacent lobules and rarely expanded to a large area as observed for those carrying der(1;16), even if the clones had acquired mutations in driver genes such as PIK3CA and PIK3R1, which highlighted the role of der(1;16) in wide clonal expansion. [Conclusions] Our results suggest that in some breast cancer cases, particularly in those with der(1;16), a highly recurrent translocation accounting for the major subset of Luminal A breast cancer, the clones with the funder driver alterations expanded macroscopically long before the onset of cancer, in which further clonal evolutions recursively occur multi-focally, giving rise to multiple proliferative lesions and ultimately, invasive cancers. Our findings provide new insight into the early development of breast cancer. Citation Format: Tomomi Nishimura, Nobuyuki Kakiuchi, Kenichi Yoshida, Takaki Sakurai, Tatsuki R. Kataoka, Eiji Kondoh, Yoshitsugu Chigusa, Masahiko Kawai, Morio Sawada, Takuya Inoue, Yasuhide Takeuchi, Hirona Maeda, Satoko Baba, Yusuke Shiozawa, Ryunosuke Saiki, Masahiro M. Nakagawa, Yasuhito Nannya, Yotaro Ochi, Tomonori Hirano, Yukiko Inagaki-Kawata, Kosuke Aoki, Masahiro Hirata, Eiji Suzuki, Masahiro Takada, Masahiro Kawashima, Kosuke Kawaguchi, Kenichi Chiba, Yuichi Shiraishi, Junko Takita, Satoru Miyano, Masaki Mandai, Kengo Takeuchi, Hironori Haga, Masakazu Toi, Seishi Ogawa. Clonal evolution of mammary epithelial cells into breast cancers [abstract]. In: Proceedings of the 2022 San Antonio Breast Cancer Symposium; 2022 Dec 6-10; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2023;83(5 Suppl) :Abstract nr P5-13-04.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 16_Supplement ( 2020-08-15), p. 4902-4902
    Abstract: [Introduction] Proliferative lesions in the breast have been implicated in the development of invasive breast cancer. Previous studies showed that adjacent atypical proliferative lesions and breast cancers shared common genetic alterations, suggesting that these evolved from the same ancestral cell. However, the clonal structure of atypical proliferative lesions and their clonal dynamics during progression to cancer are poorly understood. In this study, we compared genetic profiles of proliferative lesions and cancers from the same patients to illustrate the clonal evolution of cancer from a non-malignant epithelial cell. [Methods] Multiple samples were collected from various lesions with different disease-level located in the cancer-borne breast, using micro-dissection from formalin-fixed, paraffin-embedded surgical specimens. Somatic mutations and copy number alterations (CNAs) were evaluated by whole exome sequencing. [Results] A total of 39 samples from 6 premenopausal females carrying estrogen receptor-positive cancers were analyzed, where the samples were obtained from non-atypical (N = 1) and atypical (N = 8) proliferative lesions, and non-invasive (N = 21) and invasive (N = 4) cancers. The number of somatic mutations per sample increased with disease progression (ranging from 2 to 311). Two cases with bilateral cancers had a pathogenic germline mutation of either BRCA2 or TP53, where no somatic mutations or CNAs were shared by individual proliferative lesions, suggesting multifocal independent cancerous evolutions. By contrast, in the remaining four unilateral cases, no pathogenic germline mutations were detected, but all proliferative lesions, which were separated by a distance of 7 - 70 mm, shared one or more driver alterations, such as an AKT1 mutation, a GATA3 mutation, a CBFB mutation and concurrent 1q gain and 16q loss, while harboring private mutations/CNAs of their own. The analysis of phylogenic trees based on the number of shared mutations predicted an early origin of these founder mutations, which frequently predated decades before the onset of cancer. [Conclusions] Our results suggest that early breast cancer development is shaped by the evolution of multiple precancerous clones. In hereditary cases, this process is thought to be substantially promoted multi-focally within the entire breasts, due to innate genomic instability in each mammary epithelial cell for pathogenic germline mutations. By contrast, in sporadic cases, the ancestral cell which has acquired a founder genetic alteration expands macroscopically long before the onset of cancer, most likely in early adolescent. These expanded clones work as the niche predisposed to additional mutations, in which branching evolution occurs multi-focally and raises up multiple proliferative lesions, from which invasive cancer finally evolves. Our findings provide unique insight into the early development of breast cancer. Citation Format: Tomomi Nishimura, Nobuyuki Kakiuchi, Kenichi Yoshida, Yasuhide Takeuchi, Hirona Maeda, Yusuke Shiozawa, Masahiro M. Nakagawa, Yotaro Ochi, Yukiko Kawata, Kosuke Aoki, Masahiro Hirata, Tatsuki R. Kataoka, Takaki Sakurai, Satoko Baba, Yuichi Shiraishi, Kenichi Chiba, Kengo Takeuchi, Hironori Haga, Satoru Miyano, Masakazu Toi, Seishi Ogawa. Clonal evolution of proliferative lesions into breast cancers [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr 4902.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 81, No. 13_Supplement ( 2021-07-01), p. 92-92
    Abstract: Introduction: Proliferative lesions in the breast have been implicated in the development of invasive breast cancer. Previous studies showed that adjacent atypical proliferative lesions and breast cancers shared common genetic alterations, suggesting that these evolved from the same ancestral cell. However, the clonal structure of atypical proliferative lesions and their clonal dynamics during progression to cancer are poorly understood. In this study, we compared genetic profiles of proliferative lesions and cancers from the same patients to illustrate the clonal evolution of cancer from a non-malignant epithelial cell. Methods: Multiple samples were collected from various lesions with different disease-level located in the cancer-borne breast, using micro-dissection from formalin-fixed, paraffin-embedded surgical specimens. Somatic mutations and copy number alterations (CNAs) were evaluated by whole exome sequencing. Results: A total of 39 samples from 7 premenopausal females carrying estrogen receptor-positive cancers were analyzed, where the samples were obtained from proliferative lesions (without/with atypia) (N = 3 and 10, respectively), and non-invasive (N = 22) and invasive (N = 4) cancers. The number of somatic mutations per sample increased with disease progression (ranging from 7 to 311). Two cases with bilateral cancers had a pathogenic germline mutation of either BRCA2 or TP53, where no somatic mutations or CNAs were shared by individual proliferative lesions, suggesting multifocal independent cancerous evolutions. By contrast, in the remaining five unilateral cases, no pathogenic germline mutations were detected, but all proliferative lesions, which were separated by a distance of 7 - 70 mm, shared one or more driver alterations, such as an AKT1 mutation, a GATA3 mutation, a CBFB mutation, a PTEN mutation and concurrent 1q gain and 16q loss, while harboring private mutations/CNAs of their own. The analysis of phylogenic trees based on the number of shared mutations predicted an early origin of these founder mutations, which frequently predated decades before the onset of cancer. Conclusions: Our results suggest that early breast cancer development is shaped by the evolution of multiple precancerous clones. In hereditary cases, this process is thought to be substantially promoted multi-focally within the entire breasts, due to innate genomic instability in each mammary epithelial cell for pathogenic germline mutations. By contrast, in sporadic cases, the ancestral cell which has acquired a founder genetic alteration expands macroscopically long before the onset of cancer. These expanded clones work as the niche predisposed to additional mutations, in which branching evolution occurs multi-focally and raises up multiple proliferative lesions, from which invasive cancer finally evolves. Our findings provide unique insight into the early development of breast cancer. Citation Format: Tomomi Nishimura, Nobuyuki Kakiuchi, Kenichi Yoshida, Yasuhide Takeuchi, Hirona Maeda, Yusuke Shiozawa, Masahiro M. Nakagawa, Yotaro Ochi, Yukiko Kawata, Kosuke Aoki, Masahiro Hirata, Tatsuki R. Kataoka, Takaki Sakurai, Satoko Baba, Yuichi Shiraishi, Kenichi Chiba, Kengo Takeuchi, Hironori Haga, Satoru Miyano, Masakazu Toi, Seishi Ogawa. Clonal evolution of proliferative lesions into breast cancers [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 92.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...