GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (9)
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 12_Supplement ( 2022-06-15), p. 3792-3792
    Abstract: Background: Primary lung cancer is the leading cause of cancer-related mortality, with metastatic disease being responsible for the majority of deaths. To gain insight into the lethal process of metastasis, we report on the longitudinal evolutionary analysis of the TRACERx 421 paired primary-metastasis cohort. Methods: 712 tumor samples, of which 485 were primary tumor and 227 were metastatic samples, from 129 metastatic non-small cell lung cancer (NSCLC) patients with detailed clinical annotation were collected from 18 UK hospital sites and whole exome sequenced. Mutations and copy number events were integrated to resolve the evolutionary history of each tumor. Results: We observe that metastases generally diverge relatively late in molecular time, after the majority of mutations in the primary tumor have accumulated, with a substantial minority (33%) diverging prior to the last clonal sweep in the primary tumor. For this minority of cases, divergence is estimated to have occurred at tumor volumes below the limit of computed tomography (CT) detection. Our extensively sampled cohort reveals that sampling bias may result in erroneous inference of metastatic trajectories. 79% of metastases diverging after the last clonal sweep in the primary tumor would be misclassified as diverging prior to the last clonal sweep if only a single region of the primary tumor is considered. Patterns of dissemination range from monoclonal, involving a single metastatic clone (68% - where metastatic potential is likely acquired once in the life-history of the tumor), to polyclonal and polyphyletic (17%), where metastatic potential may have arisen multiple times during lung cancer development, or at a single time point early in the development of the tumor. We find that thoracic lymph node disease resected at surgery was responsible for less than 20% of subsequent disease dissemination, suggesting that lymph nodes likely represent a hallmark of metastatic potential rather than a gateway to further metastases. Furthermore, we observe that clones which seed the metastases are generally dominant within the primary, reflecting positive selection and acquisition of subclonal mutations in specific cancer genes (e.g. RB1, PIK3CA). In squamous cell carcinomas, we find that non-metastatic primary tumors show no significant evidence of positive subclonal selection. We find that 35% of metastases harbor driver mutations not identified in the primary tumor and identify somatic copy number alterations that are enriched in metastases (e.g. CCND1 gains in lung adenocarcinoma). Conclusions: These data highlight the potential to apply evolutionary measures to primary tumors to predict metastatic risk, the limitations to current screening approaches particularly for early tumor divergence, and the importance of future precision adjuvant therapies to target disseminated micro-metastatic clones. Citation Format: Ariana Huebner, Maise Al Bakir, Carlos Martinez Ruiz, Kristiana Grigoriadis, Thomas B. Watkins, Oriol Pich, David A. Moore, Selvaraju Veeriah, Sophia Ward, Joanne Laycock, Diana Johnson, Andrew Rowan, Maryam Razaq, Mita Akther, Cristina Naceur-Lombardelli, Sonya Hessey, Michelle Dietzen, Emma Colliver, Alexander M. Frankell, Emilia Lim, Takahiro Karasaki, Christopher Abbosh, Crispin T. Hiley, Mark S. Hill, Daniel Cook, Gareth Wilson, TRACERx consortium, Allan Hackshaw, Nicolai J. Birkbak, Simone Zaccaria, Mariam Jamal-Hanjani, Charles Swanton, Nicholas McGranahan. TRACERx: Mapping the evolution of metastases in non-small cell lung cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 3792.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 12_Supplement ( 2022-06-15), p. 6091-6091
    Abstract: Background: Lung adenocarcinoma (LUAD) is a morphologically and genetically diverse disease. The prognostic impact of LUAD histological patterns have been described, such as solid growth pattern and poor outcomes, though their underlying biology is poorly understood. Furthermore, the genomic characteristics and evolutionary constraints in relation to the inter- and intra- tumoral variance of histological patterns in primary and metastatic disease are unknown. Methods: Pathological classification of 246 patients with LUAD from the TRACERx 421 cohort was performed at the whole tumor (diagnostic samples) and multi-regional sample level (matched for tumor whole exome sequencing and RNA sequencing). Circulating tumor DNA (ctDNA) data was also integrated to determine the relationship between pathological subtypes and ctDNA detection. Results: Chromosomal instability, characterized by fraction of the genome affected by subclonal copy number alterations was significantly correlated with proportion of high-grade patterns, namely solid, cribriform and micropapillary (Spearman’s Rho 0.27, p & lt;0.001). Analysis of somatic copy number alterations (SCNAs) and driver mutation profiles showed that specific SCNAs were associated with a predominant growth pattern, such as 3q arm gains in predominantly cribriform and solid pattern tumors. Multiregional analysis of tumors with mixed patterns showed higher grade regions to be associated with a higher frequency of LOH and expression of proliferation-related pathway genes, suggesting intra-tumoral sequential evolution from low to high grade growth patterns. No recurrent subclonal mutations or SCNAs were found to associate with progression from low to high grade patterns. The growth pattern in metastatic tumors tended to show similar or a higher-grade pattern compared with primary tumor regions harboring metastasizing clones (seeding regions). The growth pattern of the seeding regions in the primary tumor was not necessarily higher grade compared with their non-seeding counterparts. Finally, the proportion of solid pattern in the primary tumor and the presence of necrosis were found to be strongly associated with pre-operative ctDNA detection, while histological ‘spread through air spaces’ (STAS) was identified in 92% (12/13) of pre-operative ctDNA-negative tumors that subsequently were associated with recurrence. Patients with both pre-operative detectable ctDNA and STAS had a particularly poor prognosis. Conclusion: These data reveal insights into the association between morphological and molecular heterogeneity in LUAD, describe key features of tumor evolutionary tendencies and demonstrate the utility of detailed tumor morphological assessment integrated with molecular characterization and ctDNA detection. Citation Format: Takahiro Karasaki, David A. Moore, Selvaraju Veeriah, Cristina Naceur-Lombardelli, Antonia Toncheva, Maise Al Bakir, Thomas B. Watkins, Oriol Pich, Alexander M. Frankell, Emilia Lim, Mark S. Hill, Kristiana Grigoriadis, Carlos Martinez-Ruiz, James R. Black, Clare Puttick, Dhruva Biswas, Ariana Huebner, Michelle Dietzen, Emma Colliver, Claudia Lee, Nnenna Kanu, Sadegh Mohammad Saghafinia, Francisco Gimeno Valiente, Christopher Abbosh, Crispin T. Hiley, Simone Zaccaria, Nicolai J. Birkbak, Allan Hackshaw, TRACERx Consortium, Teresa Marafioti, Roberto Salgado, John Le Quesne, Andrew G. Nicholson, Nicholas McGranahan, Charles Swanton, Mariam Jamal-Hanjani. Evolutionary characterisation of lung adenocarcinoma pathological subtypes in TRACERx [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 6091.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 12_Supplement ( 2022-06-15), p. 692-692
    Abstract: Introduction: Intra-tumor heterogeneity (ITH) is a major driver of treatment resistance. ITH also affects anti-tumor immunity, with immune cell infiltration, neo-antigen expression and T cell receptor (TCR) profiles differing between separate regions of an individual tumor. However, the extent to which separate tumor subclones differ in their capacity for immune evasion, the tumor-intrinsic mechanisms underlying any such heterogeneity, and its impact on cancer immunosurveillance remain largely unexplored. We have previously developed personalized models of anti-tumor immunity, based on co-cultures of cancer organoids and autologous T-cells. These co-culture systems can be used to evaluate the efficacy of cancer immunosurveillance at the level of an individual patient. Approach: Here, we leverage the multi-region TRACERx lung cancer evolution study to generate a patient-derived study platform that allows the evaluation of T-cell responses to individual cancer subclones. We generated libraries of & gt;20 separate non-small cell lung cancer (NSCLC) organoid lines, based on isolating individual (clonal) organoids established from multiple spatially separated tumor regions. Each organoid subline was co-cultured with autologous tumor infiltrating lymphocytes (TIL) to evaluate how they differ in their capacity to elicit a T-cell response. Results: Our data reveal heterogeneity between individual clonal organoid sublines in their capacity to stimulate TIL. The proportion of TIL being activated by a particular subclone, as measured by 4-1BB (CD137) expression, ranged from 5 to 42%. These differences could not be explained by differences in MHC class I or PD-L1 expression. We are currently using DNA, RNA and TCR sequencing to characterize ‘immune evading’ and ‘non-immune evading’ sublines. Data will be updated on emerging subclonal immune evasion mechanisms inferred through DNA/RNA/TCR sequencing. Conclusion: Individual cancer subclones show differences in the degree of immune evasion. This patient-derived study platform allows moving beyond descriptive analyses of the heterogeneity of anti-tumor immunity, allowing fine-grained functional studies of how ITH affects cancer immunosurveillance. Citation Format: Krijn K. Dijkstra, Roberto Vendramin, Robert E. Hynds, David R. Pearce, Despoina Karagianni, Felipe Gálvez-Cancino, Oriol Pich, Mark S. Hill, Vittorio Barbè, Andrew Rowan, Selvaraju Veeriah, Cristina Naceur-Lombardelli, Antonia Toncheva, Supreet Bola, Mariam Jamal-Hanjani, Crispin Hiley, Kevin Litchfield, James Reading, Sergio A. Quezada, Charles Swanton, TRACERx consortium. Patient-derived co-cultures of TRACERx lung cancer organoids and autologous T-cells reveal heterogeneity in immune evasion between cancer subclones [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 692.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2010
    In:  Molecular Cancer Therapeutics Vol. 9, No. 6 ( 2010-06-01), p. 1544-1553
    In: Molecular Cancer Therapeutics, American Association for Cancer Research (AACR), Vol. 9, No. 6 ( 2010-06-01), p. 1544-1553
    Abstract: The met proto-oncogene is functionally linked with tumorigenesis and metastatic progression. Validation of the receptor tyrosine kinase c-Met as a selective anticancer target has awaited the emergence of selective c-Met inhibitors. Herein, we report ARQ 197 as the first non-ATP–competitive small molecule that selectively targets the c-Met receptor tyrosine kinase. Exposure to ARQ 197 resulted in the inhibition of proliferation of c-Met–expressing cancer cell lines as well as the induction of caspase-dependent apoptosis in cell lines with constitutive c-Met activity. These cellular responses to ARQ 197 were phenocopied by RNAi-mediated c-Met depletion and further demonstrated by the growth inhibition of human tumors following oral administration of ARQ 197 in multiple mouse xenograft efficacy studies. Cumulatively, these data suggest that ARQ 197, currently in phase II clinical trials, is a promising agent for targeting cancers in which c-Met-driven signaling is important for their survival and proliferation. Mol Cancer Ther; 9(6); 1544–53. ©2010 AACR.
    Type of Medium: Online Resource
    ISSN: 1535-7163 , 1538-8514
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2010
    detail.hit.zdb_id: 2062135-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 24, No. 7 ( 2018-04-01), p. 1604-1616
    Abstract: Purpose: Allogeneic bone marrow transplantation (BMT) provides curative therapy for leukemia via immunologic graft-versus-leukemia (GVL) effects. In practice, this must be balanced against life threatening pathology induced by graft-versus-host disease (GVHD). Recipient dendritic cells (DC) are thought to be important in the induction of GVL and GVHD. Experimental Design: We have utilized preclinical models of allogeneic BMT to dissect the role and modulation of recipient DCs in controlling donor T-cell–mediated GVHD and GVL. Results: We demonstrate that recipient CD8α+ DCs promote activation-induced clonal deletion of allospecific donor T cells after BMT. We compared pretransplant fms-like tyrosine kinase-3 ligand (Flt-3L) treatment to the current clinical strategy of posttransplant cyclophosphamide (PT-Cy) therapy. Our results demonstrate superior protection from GVHD with the immunomodulatory Flt-3L approach, and similar attenuation of GVL responses with both strategies. Strikingly, Flt-3L treatment permitted maintenance of the donor polyclonal T-cell pool, where PT-Cy did not. Conclusions: These data highlight pre-transplant Flt-3L therapy as a potent new therapeutic strategy to delete alloreactive T cells and prevent GVHD, which appears particularly well suited to haploidentical BMT where the control of infection and the prevention of GVHD are paramount. Clin Cancer Res; 24(7); 1604–16. ©2018 AACR.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 72, No. 8_Supplement ( 2012-04-15), p. LB-1-LB-1
    Abstract: Herein we describe the implementation of a biochemical and biophysical screening strategy to discover small molecules that inhibit Akt through a mechanism distinct from ATP-competitive inhibitors. A series of novel derivatives of the core scaffold 3H-imidazo[4,5-b]pyridine were identified and optimized. These Akt inhibitors demonstrated potent inhibition of intracellular Akt and downstream targets including PRAS40 activation in vitro. Pharmacodynamic and pharmacokinetic studies in vivo demonstrated the effectiveness of the series at inhibiting the activation of Akt and an additional downstream effector (p70S6) following oral dosing in mice. Co-crystallization studies with un-phosphorylated Akt1 revealed that as a consequence of binding these novel, potent and selective, ATP-independent inhibitors the ATP binding cleft is occupied by non-polar residues which are associated as tight clusters. The cleft is closed with a ‘hydrophobic lock’ which may function to sterically exclude the binding of both ATP and ATP-competitive inhibitors. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr LB-1. doi:1538-7445.AM2012-LB-1
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2012
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 16_Supplement ( 2020-08-15), p. 1645-1645
    Abstract: TGF-βs play a central regulatory role in maintaining homeostasis and coordinating response to injury in the adult animal. Consequently, dysregulation of TGF-β signaling has been implicated in many pathological states, including cancer. Several TGF-β pathway antagonists are now in early phase clinical oncology trials. However, surprisingly little is known about when and where the TGF-β pathway is activated in the adult animal. To address this need, we have generated a TGF-β pathway reporter mouse in which the expression of eGFP is driven by an artificial enhancer element consisting of 6 repeats of a strong Smad3 binding element from the distal region of the JunB promoter (S3 × 6 & gt;GFP reporter). This reporter was & gt;10x more sensitive in vitro than the commonly used CAGA12-based reporter. The reporter construct was knocked into the mouse ROSA26 locus using CRISPR technology and a founder line was derived. Whole body fluorescent imaging of an adult female mouse highlighted TGF-β pathway activation in the gastrointestinal tract, lymph nodes, costal cartilage, brown adipose tissue, brain ventricles and choroid plexi, among other tissues. Since high dose pharmacologic inhibition of the TGF-β pathway has previously been associated with cardiac valvulopathy in preclinical toxicology studies, we immunostained heart sections from the reporter mouse for GFP and observed high endogenous TGF-β pathway activation in the atrioventricular valve leaflets. Quantitative IVIS fluorescent imaging of isolated organs confirmed TGF-β pathway activation in many different tissues in the normal adult mouse, with the pancreas showing the highest level of endogenous activation. Interestingly, the level of TGF-β pathway activation in different tissues was highly correlated with the frequency of inactivating mutations in TGF-β pathway components in tumors from the corresponding tissue in humans. This observation suggests that a high level of TGF-β pathway activation in normal tissues may reflect a non-redundant tumor suppressor role for the TGF-β pathway in maintaining homeostasis in those tissues. To specifically address the activation state of the TGF-β pathway during tumorigenesis, we intercrossed the S3 × 6 & gt;GFP reporter mouse with the MMTV-PyVT mouse model of metastatic breast cancer. Reporter activity was strongly upregulated in mammary tumors when compared with the surrounding mammary gland. Using cells cultured from the primary tumors, we confirmed that the reporter signal in the tumor cells can be blocked by small molecule antagonists of the TGF-β pathway. This reporter mouse should be a useful tool to assess the cellular location and extent of TGF-β pathway activation during tumor development, and the impact of TGF-β antagonists on TGF-β signaling in tumors and normal tissues. Citation Format: Yu-an Yang, Christina Stuelten, Youngjae Bahn, Ji-Hyeon Lee, Madhu Gargesha, Hibret Adissu, Mark Simpson, Caroline S. Hill, Sushil G. Rane, Lalage M. Wakefield. A new TGF-b pathway reporter mouse for analysis of TGF-β signaling in normal homeostasis and cancer [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr 1645.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 15, No. 4 ( 2009-02-15), p. 1192-1198
    Abstract: Purpose: Single-agent chemotherapy is largely the treatment of choice for systemic therapy of metastatic melanoma, but survival rates are low, and novel adjuvant and systemic therapies are urgently required. Endoplasmic reticulum (ER) stress is a potential therapeutic target, and two relatively new drugs, fenretinide and bortezomib (Velcade), each acting via different cellular mechanisms, induce ER stress leading to apoptosis in melanoma cells. The aim of this study was to test the hypothesis that apoptosis of melanoma cells may be increased by combining clinically achievable concentrations of fenretinide and bortezomib. Experimental Design: Three human melanoma cell lines were used to assess changes in viability and the induction of apoptosis in response to fenretinide, bortezomib, or both drugs together. A s.c. xenograft model was used to test responses in vivo. Results: Fenretinide and bortezomib synergistically decreased viability and increased apoptosis in all three melanoma lines at clinically achievable concentrations. This was also reflected by increased expression of GADD153, a marker of ER stress-induced apoptosis. In vivo, fenretinide in combination with bortezomib gave a marked reduction in xenograft tumor volume and an increase in apoptosis compared with fenretinide or bortezomib alone. The cell cycle stage of tumor cells in vivo were similar to that predicted from the effects of each drug or the combination in vitro. Conclusions: These results suggest that fenretinide and bortezomib, both of which are available in clinical formulation, warrant clinical evaluation as a combination therapy for metastatic melanoma.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2009
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Cancer Immunology Research, American Association for Cancer Research (AACR), Vol. 8, No. 8 ( 2020-08-01), p. 1085-1098
    Abstract: The adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD) is known to facilitate caspase-1 activation, which is essential for innate host immunity via the formation of the inflammasome complex, a multiprotein structure responsible for processing IL1β and IL18 into their active moieties. Here, we demonstrated that ASC-deficient CD8+ T cells failed to induce severe graft-versus-host disease (GVHD) and had impaired capacity for graft rejection and graft-versus-leukemia (GVL) activity. These effects were inflammasome independent because GVHD lethality was not altered in recipients of caspase-1/11–deficient T cells. We also demonstrated that ASC deficiency resulted in a decrease in cytolytic function, with a reduction in granzyme B secretion and CD107a expression by CD8+ T cells. Altogether, our findings highlight that ASC represents an attractive therapeutic target for improving outcomes of clinical transplantation.
    Type of Medium: Online Resource
    ISSN: 2326-6066 , 2326-6074
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2732517-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...