GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (11)
  • 1
    In: Cancer Epidemiology, Biomarkers & Prevention, American Association for Cancer Research (AACR), Vol. 32, No. 3 ( 2023-03-06), p. 315-328
    Abstract: Tobacco smoking is an established risk factor for colorectal cancer. However, genetically defined population subgroups may have increased susceptibility to smoking-related effects on colorectal cancer. Methods: A genome-wide interaction scan was performed including 33,756 colorectal cancer cases and 44,346 controls from three genetic consortia. Results: Evidence of an interaction was observed between smoking status (ever vs. never smokers) and a locus on 3p12.1 (rs9880919, P = 4.58 × 10−8), with higher associated risk in subjects carrying the GG genotype [OR, 1.25; 95% confidence interval (CI), 1.20–1.30] compared with the other genotypes (OR & lt;1.17 for GA and AA). Among ever smokers, we observed interactions between smoking intensity (increase in 10 cigarettes smoked per day) and two loci on 6p21.33 (rs4151657, P = 1.72 × 10−8) and 8q24.23 (rs7005722, P = 2.88 × 10−8). Subjects carrying the rs4151657 TT genotype showed higher risk (OR, 1.12; 95% CI, 1.09–1.16) compared with the other genotypes (OR & lt;1.06 for TC and CC). Similarly, higher risk was observed among subjects carrying the rs7005722 AA genotype (OR, 1.17; 95% CI, 1.07–1.28) compared with the other genotypes (OR & lt;1.13 for AC and CC). Functional annotation revealed that SNPs in 3p12.1 and 6p21.33 loci were located in regulatory regions, and were associated with expression levels of nearby genes. Genetic models predicting gene expression revealed that smoking parameters were associated with lower colorectal cancer risk with higher expression levels of CADM2 (3p12.1) and ATF6B (6p21.33). Conclusions: Our study identified novel genetic loci that may modulate the risk for colorectal cancer of smoking status and intensity, linked to tumor suppression and immune response. Impact: These findings can guide potential prevention treatments.
    Type of Medium: Online Resource
    ISSN: 1055-9965 , 1538-7755
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036781-8
    detail.hit.zdb_id: 1153420-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 15 ( 2023-08-01), p. 2572-2583
    Abstract: Colorectal cancer risk can be impacted by genetic, environmental, and lifestyle factors, including diet and obesity. Gene-environment interactions (G × E) can provide biological insights into the effects of obesity on colorectal cancer risk. Here, we assessed potential genome-wide G × E interactions between body mass index (BMI) and common SNPs for colorectal cancer risk using data from 36,415 colorectal cancer cases and 48,451 controls from three international colorectal cancer consortia (CCFR, CORECT, and GECCO). The G × E tests included the conventional logistic regression using multiplicative terms (one degree of freedom, 1DF test), the two-step EDGE method, and the joint 3DF test, each of which is powerful for detecting G × E interactions under specific conditions. BMI was associated with higher colorectal cancer risk. The two-step approach revealed a statistically significant G×BMI interaction located within the Formin 1/Gremlin 1 (FMN1/GREM1) gene region (rs58349661). This SNP was also identified by the 3DF test, with a suggestive statistical significance in the 1DF test. Among participants with the CC genotype of rs58349661, overweight and obesity categories were associated with higher colorectal cancer risk, whereas null associations were observed across BMI categories in those with the TT genotype. Using data from three large international consortia, this study discovered a locus in the FMN1/GREM1 gene region that interacts with BMI on the association with colorectal cancer risk. Further studies should examine the potential mechanisms through which this locus modifies the etiologic link between obesity and colorectal cancer. Significance: This gene-environment interaction analysis revealed a genetic locus in FMN1/GREM1 that interacts with body mass index in colorectal cancer risk, suggesting potential implications for precision prevention strategies.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Epidemiology, Biomarkers & Prevention, American Association for Cancer Research (AACR), Vol. 31, No. 5 ( 2022-05-04), p. 1077-1089
    Abstract: Currently known associations between common genetic variants and colorectal cancer explain less than half of its heritability of 25%. As alcohol consumption has a J-shape association with colorectal cancer risk, nondrinking and heavy drinking are both risk factors for colorectal cancer. Methods: Individual-level data was pooled from the Colon Cancer Family Registry, Colorectal Transdisciplinary Study, and Genetics and Epidemiology of Colorectal Cancer Consortium to compare nondrinkers (≤1 g/day) and heavy drinkers ( & gt;28 g/day) with light-to-moderate drinkers (1–28 g/day) in GxE analyses. To improve power, we implemented joint 2df and 3df tests and a novel two-step method that modifies the weighted hypothesis testing framework. We prioritized putative causal variants by predicting allelic effects using support vector machine models. Results: For nondrinking as compared with light-to-moderate drinking, the hybrid two-step approach identified 13 significant SNPs with pairwise r2 & gt; 0.9 in the 10q24.2/COX15 region. When stratified by alcohol intake, the A allele of lead SNP rs2300985 has a dose–response increase in risk of colorectal cancer as compared with the G allele in light-to-moderate drinkers [OR for GA genotype = 1.11; 95% confidence interval (CI), 1.06–1.17; OR for AA genotype = 1.22; 95% CI, 1.14–1.31], but not in nondrinkers or heavy drinkers. Among the correlated candidate SNPs in the 10q24.2/COX15 region, rs1318920 was predicted to disrupt an HNF4 transcription factor binding motif. Conclusions: Our study suggests that the association with colorectal cancer in 10q24.2/COX15 observed in genome-wide association study is strongest in nondrinkers. We also identified rs1318920 as the putative causal regulatory variant for the region. Impact: The study identifies multifaceted evidence of a possible functional effect for rs1318920.
    Type of Medium: Online Resource
    ISSN: 1055-9965 , 1538-7755
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036781-8
    detail.hit.zdb_id: 1153420-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2016
    In:  Cancer Immunology Research Vol. 4, No. 7 ( 2016-07-01), p. 611-620
    In: Cancer Immunology Research, American Association for Cancer Research (AACR), Vol. 4, No. 7 ( 2016-07-01), p. 611-620
    Abstract: Significant subsets of patients with oral cancer fail to respond to single-agent programmed death (PD) blockade. Syngeneic models of oral cancer were used to determine if blocking oncogenic signaling improved in vivo responses to PD-L1 monoclonal antibody (mAb). Anti–PD-L1 enhanced durable primary tumor control and survival when combined with mTOR (rapamycin), but not in combination with MEK inhibition (PD901) in immunogenic MOC1 tumors. Conversely, PD-L1 mAb did not enhance tumor control in poorly immunogenic MOC2 tumors. Rapamycin enhanced expansion of peripheral antigen-specific CD8 T cells and IFNγ production following ex vivo antigen stimulation. More CD8 T cells infiltrated and were activated after PD-L1 mAb treatment in mice with immunogenic MOC1 tumors, which were stable or increased by the addition of rapamycin, but suppressed when PD901 was added. Rapamycin increased IFNγ production capacity in peripheral and tumor-infiltrating CD8 T cells. In vivo antibody depletion revealed a CD8 T-cell–dependent, and not NK cell–dependent mechanism of tumor growth inhibition after treatment with rapamycin and PD-L1 mAb, ruling out significant effects from NK cell–mediated antibody-dependent cellular cytotoxicity. Rapamycin also enhanced IFNγ or PD-L1 mAb treatment–associated induction of MHC class I expression on MOC1 tumor cells, an effect abrogated by depleting infiltrating CD8 T cells from the tumor microenvironment. These data conflict with traditional views of rapamycin as a universal immunosuppressant, and when combined with evidence of enhanced antitumor activity with the combination of rapamycin and PD-L1 mAb, suggest that this treatment combination deserves careful evaluation in the clinical setting. Cancer Immunol Res; 4(7); 611–20. ©2016 AACR.
    Type of Medium: Online Resource
    ISSN: 2326-6066 , 2326-6074
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2732517-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Discovery, American Association for Cancer Research (AACR), Vol. 11, No. 12 ( 2021-12-01), p. 3008-3027
    Abstract: Genomic studies of pediatric cancer have primarily focused on specific tumor types or high-risk disease. Here, we used a three-platform sequencing approach, including whole-genome sequencing (WGS), whole-exome sequencing (WES), and RNA sequencing (RNA-seq), to examine tumor and germline genomes from 309 prospectively identified children with newly diagnosed (85%) or relapsed/refractory (15%) cancers, unselected for tumor type. Eighty-six percent of patients harbored diagnostic (53%), prognostic (57%), therapeutically relevant (25%), and/or cancer-predisposing (18%) variants. Inclusion of WGS enabled detection of activating gene fusions and enhancer hijacks (36% and 8% of tumors, respectively), small intragenic deletions (15% of tumors), and mutational signatures revealing of pathogenic variant effects. Evaluation of paired tumor–normal data revealed relevance to tumor development for 55% of pathogenic germline variants. This study demonstrates the power of a three-platform approach that incorporates WGS to interrogate and interpret the full range of genomic variants across newly diagnosed as well as relapsed/refractory pediatric cancers. Significance: Pediatric cancers are driven by diverse genomic lesions, and sequencing has proven useful in evaluating high-risk and relapsed/refractory cases. We show that combined WGS, WES, and RNA-seq of tumor and paired normal tissues enables identification and characterization of genetic drivers across the full spectrum of pediatric cancers. This article is highlighted in the In This Issue feature, p. 2945
    Type of Medium: Online Resource
    ISSN: 2159-8274 , 2159-8290
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2607892-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 81, No. 13_Supplement ( 2021-07-01), p. 642-642
    Abstract: Clinical genomic studies of pediatric cancer have primarily focused on specific tumor types or high-risk disease. In the Genomes for Kids study (NCT02530658) we used a three-platform sequencing approach, including whole genome (WGS), whole exome (WES) and RNA sequencing, to examine tumor and paired germline genomes from prospectively identified children with cancer. The goal of the study was to assess the potential of comprehensive next generation sequencing to elucidate the molecular mechanisms underlying tumor formation and investigate the potential of this information to influence clinical decision-making.The cohort, with a median age of 6 yrs, range 0 - 26 yrs, included 301 patients with newly diagnosed (85%) or relapsed/refractory (15%) cancers, unselected for tumor type or stage. Patients with hematologic malignancies accounted for 41% of cases, 31% had CNS tumors, and 28% had other non-CNS solid tumors. This cohort also included 18 patients with very rare tumor types, defined here as occurring in less than 2 cases per million person per year.Two hundred fifty three patients (84%) had sufficient tumor for three-platform sequencing and all 301 had adequate paired germline samples. Following analysis, 86% of patients harbored diagnostic (53%), prognostic (57%), therapeutically relevant (25%), and/or cancer predisposing (18%) variants. The inclusion of WGS enabled detection of oncogenic gene fusions, as well as 22 cases in which oncogenes were activated through enhancer hijacking, a particularly frequent occurrence in hematologic malignancies. In addition, WGS effectively detected clinically relevant small intragenic deletions (15% of tumors) and a variety of mutational signatures, which were not detectable through analysis of whole exome data. Evaluation of 56 pathogenic germline variants in the context of paired tumor sequence data helped establish the disease relevance of several genes that are not typically associated with the cancer type in question, providing critical insights on a case-by-case basis. Examples include a pathogenic germline variant in MUTYH in a patient with retinoblastoma whose tumor exhibited a mutation signature associated with reactive oxygen species indicative of loss of MUTYH function; and conversely, a likely pathogenic variant in PMS2 in a rare brain cancer, which did not exhibit a mutation signature associated with microsatellite instability. This study successfully demonstrated the power of this three-platform approach to interrogate and interpret the full range of genomic variants across newly diagnosed as well as relapsed/refractory pediatric cancers. As a result of these findings, we have incorporated this three-platform approach into our routine real-time clinical service at St. Jude Children's Hospital. Citation Format: David A. Wheeler, Scott Newman, Joy Nakitandwe, Chimene A. Kesserwan, Elizabeth M. Azzato, Michael C. Rusch, Sheila Shurtleff, Armita Bahrami, Brent Orr, Jeffery M. Klco, Dale J. Hedges, Kayla V. Hamilton, Scott G. Foy, Michael N. Edmonson, Andrew Thrasher, Jiali Gu, Lynn W. Harrison, Lu Wang, Roya Mostafavi, Manish Kubal, Jamie Maciaszek, Michael Clay, Annastasia Ouma, Antonina Silkov, Yanling Liu, Zhaojie Zhang, Yu Liu, Samuel W. Brady, Xin Zhou, Mark Wilkinson, Delaram Rahbarinia, Jay Knight, Jian Wang, Charles G. Mullighan, Rose B. McGee, Emily A. Quinn, Elsie L. Gerhardt, Leslie M. Taylor, Regina Nuccio, Jessica M. Valdez, Stacy J. Hines-Dowell, Alberto Pappo, Giles Robinson, Liza-Marie Johnson, Ching-Hon Pui, David W. Ellison, James R. Downing, Jinghui Zhang, Kim E. Nichols. Genomes for Kids: Comprehensive DNA and RNA sequencing defining the scope of actionable mutations in pediatric cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 642.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 14, No. 20 ( 2008-10-15), p. 6580-6589
    Abstract: Purpose: Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) allows noninvasive, in vivo measurements of tissue microvessel perfusion and permeability. We examined whether DCE-MRI done after two cycles of neoadjuvant chemotherapy could predict final clinical and pathologic response in primary breast cancers. Experimental Design: Thirty-seven patients with primary breast cancer, due to receive six cycles of neoadjuvant 5-fluorouracil, epirubicin and cyclophosphamide chemotherapy, were examined using DCE-MRI before neoadjuvant chemotherapy and after two cycles of treatment. Changes in DCE-MRI kinetic parameters (Ktrans, kep, ve, MaxGd, rBV, rBF, MTT) were correlated with the final clinical and pathologic response to neoadjuvant chemotherapy. Test-retest variability was used to determine individual patient response. Results: Twenty-eight patients were evaluable for response (19 clinical responders and 9 nonresponders; 11 pathologic responders and 17 nonresponders). Changes in the DCE-MRI kinetic parameters Ktrans, kep, MaxGd, rBV, and rBF were significantly correlated with both final clinical and pathologic response (P & lt; 0.01). Change in Ktrans was the best predictor of pathologic nonresponse (area under the receiver operating characteristic curve, 0.93; sensitivity, 94%; specificity, 82%), correctly identifying 94% of nonresponders and 73% of responders. Change in MRI-derived tumor size did not predict for pathologic response. Conclusion: Changes in breast tumor microvessel functionality as depicted by DCE-MRI early on after starting anthracycline-based neoadjuvant chemotherapy can predict final clinical and pathologic response. The ability to identify nonresponders early may allow the selection of patients who may benefit from a therapy change.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2008
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Cancer Epidemiology, Biomarkers & Prevention, American Association for Cancer Research (AACR), Vol. 23, No. 12 ( 2014-12-01), p. 2971-2976
    Abstract: Background: Calcium intake may reduce risk of colorectal cancer, but the mechanisms remain unclear. Studies of interaction between calcium intake and SNPs in calcium-related pathways have yielded inconsistent results. Methods: To identify gene–calcium interactions, we tested interactions between approximately 2.7 million SNPs across the genome with self-reported calcium intake (from dietary or supplemental sources) in 9,006 colorectal cancer cases and 9,503 controls of European ancestry. To test for multiplicative interactions, we used multivariable logistic regression and defined statistical significance using the conventional genome-wide α = 5E−08. Results: After accounting for multiple comparisons, there were no statistically significant SNP interactions with total, dietary, or supplemental calcium intake. Conclusions: We found no evidence of SNP interactions with calcium intake for colorectal cancer risk in a large population of 18,509 individuals. Impact: These results suggest that in genome-wide analysis common genetic variants do not strongly modify the association between calcium intake and colorectal cancer in European populations. Cancer Epidemiol Biomarkers Prev; 23(12); 2971–6. ©2014 AACR.
    Type of Medium: Online Resource
    ISSN: 1055-9965 , 1538-7755
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2014
    detail.hit.zdb_id: 2036781-8
    detail.hit.zdb_id: 1153420-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 71, No. 8_Supplement ( 2011-04-15), p. 2613-2613
    Abstract: Introduction: Histone deacetylase inhibitors (HDACi) are a novel group of anti-cancer drugs with marked efficacy in haematological malignancy, for which thrombocytopenia (TCP) is the predominant dose limiting toxicity, currently limiting their use in combination treatment strategies. Using the HDAC 1/2 selective HDACi romidepsin and the pan-HDACi panobinostat, we have investigated the processes which underscore this significant clinical problem. Experimental procedures and data: We have demonstrated TCP is not due to myelosuppression, but decreased platelet release from megakaryocytes (MK) based on: 1) platelet half-life studies utilizing NHS-biotin to label circulating platelets, and reticulated platelet assays using thiazole orange staining, 2) studies in Bak-/- and Bak-/-Bax-/- bone marrow reconstituted mice which excluded HDACi-induced platelet apoptosis, and 3) bone marrow (BM) sections showing increased MK number in mice treated with HDACi compared to controls. Increases in thrombopoietin (TPO) were seen in thrombocytopenic mice, and using c-Mpl-/- mice, we demonstrated that TPO is required for the MK hyperplasia and rebound thrombocyosis seen on treatment cessation. To further elucidate the pathway causing reduced platelet production, we used the human MK cell line Meg-01 and primary MK derived from fetal liver cells stimulated with TPO. Proplatelet assays of primary MK showed reductions in proplatelet extensions following HDACi exposure and a concomitant dose dependant increase in the phosphorylation of myosin light chain (MLC). The phosphorylation status of the MLC (pMLC) is regulated by the Rho GTPase family, of which Rac1/CDC42, acting via PAK1 are postulated to have opposing actions to RhoA which is known to increase pMLC and reduce proplatelet formation. Western blots of lysates from Meg-01 and primary cells showed a reduction in protein levels of all three family members following HDACi, however qRT PCR did not demonstrate HDACi to cause transcriptional repression of these proteins We were able to recapitulate alteration in pMLC levels using both pharmacological inhibitors of PAK1 and Rac1 as well as genetically, using constitutively active and dominant negative Rac1 constructs. Furthermore, by administering a murine TPO-mimetic, we were able to treat murine HDACi-induced TCP in-vivo in both non-tumor bearing mice, resulting in platelet numbers increasing to levels similar to vehicle treated controls in naïve mice. In mice with established Eμ-Myc lymphoma, platelet numbers were increased above all control groups. Conclusions: HDACi induced TCP not due to myeloablation or effects on platelet half life, but is rather due to impaired proplatelet formation, most likely via inhibition of the Rho/Rac1/CDC42 pathways. HDACi induced TCP my be overcome in a variety of settings using TPO-mimetics. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 102nd Annual Meeting of the American Association for Cancer Research; 2011 Apr 2-6; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2011;71(8 Suppl):Abstract nr 2613. doi:10.1158/1538-7445.AM2011-2613
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2011
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 76, No. 14_Supplement ( 2016-07-15), p. 1475-1475
    Abstract: MEDI9197 (formerly 3M-052) is a sustained-release imidazoquinoline toll like receptor (TLR) TLR7/8 agonist designed with a lipid tail that, when injected, is retained within the tumor. This has been shown in pharmacokinetic studies in mice and rats injected with MEDI9197 via the subcutaneous (SC) or intratumoral (IT, mouse only) routes. Stimulation of TLR7 and TLR8 in primary human dendritic cells induces the release of interferon-alpha (IFN-a) from plasmacytoid dendritic cells (pDCs) and interleukin 12 (IL-12) from myeloid dendritic cells (mDCs). Intratumoral administration of MEDI9197 induces a local immune response characterized by upregulation of genes involved in activation of innate and adaptive immunity both from the injected tumor and tumor draining lymph node. Furthermore, flow cytometric analysis of tumor infiltrating lymphocytes (TILs) show increased expression of activation markers, such as CD69, on natural killer (NK) cells and CD8 cytotoxic T cells. This local stimulation of immune cells with MEDI9197 results in tumor growth inhibition as shown in the B16F10 luc syngeneic mouse tumor model using in vivo imaging system (IVIS) equipment. Additionally, combination of MEDI9197 with immune checkpoint inhibitors enhances the efficacy observed in syngeneic mouse tumor models. The data presented shows intratumoral administration of MEDI9197 induces local immune activation leading to tumor growth inhibition in preclinical models of cancer. MEDI9197 is currently being evaluated as a monotherapy for safety and efficacy in human clinical trials. Citation Format: Stefanie Mullins, Iwen Grigsby, Lester I. Harrison, Song Ren, Serguei Soukharev, Lesley Young, James M. Elvecrog, Robert W. Wilkinson, Mark A. Tomai, Ronald Herbst, John P. Vasilakos, Andrew J. Leishman. Local immune activation resulting in tumor growth inhibition with MEDI9197 - an intratumorally administered TLR7/8 agonist. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 1475.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...