GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (22)
  • 1
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2004
    In:  Cancer Research Vol. 64, No. 16 ( 2004-08-15), p. 5624-5631
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 64, No. 16 ( 2004-08-15), p. 5624-5631
    Abstract: The gastrin gene is expressed widely in pancreatic adenocarcinomas and the study aimed to assess its role in both the resistance of cancer cells to apoptosis and the sensitivity of cells to chemotherapeutic agents. Two human pancreatic cell lines, PAN1 and BXPC3, expressed gastrin at both the RNA and protein levels and are shown to be representative of human pancreatic adenocarcinomas in terms of gastrin expression. Inhibition of endogenous gastrin production by tumor cells was achieved with neutralizing gastrin antiserum and transfection with a gastrin antisense plasmid. Gastrin antiserum synergized with both taxotere and gemcitabine in inhibiting the in vitro growth of the PAN1 cell line with the inhibitory effect of the antiserum increasing from 12.7% to 70.2% with taxotere (P & lt; 0.05) and 28.6% with gemcitabine (P & lt; 0.01) after controlling for the effects of the cytotoxics. Synergy was only achieved with taxotere in BXPC3 cells with the inhibitory effect of gastrin antiserum increasing from 22.9% to 50.0% (P & lt; 0.005). Cells transfected with gastrin antisense had reduced in vitro growth in low serum conditions and were poorly tumorigenic in nude mice at an orthotopic site. Gastrin antisense-transfected PAN1 cells had increased sensitivity to the antiproliferative effects of both gemcitabine (IC50 of & gt;100 μg/ml reduced to 0.1 μg/ml) and taxotere (IC50 of 20 μg/ml reduced to & lt;0.01 μg/ml) when compared with vector controls. The increased sensitivity of PAN1 antisense coincided with increased caspase-3 activity and reduced protein kinase B/Akt phosphorylation in response to both gemcitabine and taxotere. Gastrin gene circumvention may be an optimal adjunct to chemotherapeutic agents, such as taxotere and gemcitabine, in pancreatic adenocarcinoma.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2004
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2004
    In:  Cancer Research Vol. 64, No. 6 ( 2004-03-15), p. 1915-1919
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 64, No. 6 ( 2004-03-15), p. 1915-1919
    Abstract: Mechanisms by which premalignant Barrett’s metaplasia (BM) progresses to esophageal adenocarcinoma are currently being sought. This study investigated the role played by the polypeptide hormone gastrin, specifically its antiapoptotic effects through activation of protein kinase B/Akt (PKB/Akt). In esophageal cell lines with low basal levels of activated PKB/Akt, phosphorylation could be induced by exogenous amidated gastrin. High basal levels of activated PKB/Akt were linked to endogenous gastrin expression and were reduced by treatment with a cholecystokinin-type 2 receptor (CCK-2R) antagonist. Expression of a constitutively active splice variant of the CCK-2R additionally increased basal activation of PKB/Akt. It is proposed that gastrin acting in an autocrine and endocrine manner via a CCK-2R isoform may activate PKB/Akt and that with expression of gastrin and CCK-2R isoforms increasing in BM samples, gastrin may aid progression of BM through amplification of antiapoptotic pathways. Evidence for this proposal was provided through the observed specific up-regulation of PKB/Akt in BM samples.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2004
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2006
    In:  Cancer Research Vol. 66, No. 7 ( 2006-04-01), p. 3504-3512
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 66, No. 7 ( 2006-04-01), p. 3504-3512
    Abstract: This study examined whether gastrin modulates endothelial cell activity via heparin-binding epidermal growth factor–like growth factor (HB-EGF) expression. Human umbilical vascular endothelial cells (HUVEC) were assessed for tubule formation in the presence of amidated gastrin-17 (G17) and glycine-extended gastrin-17 (GlyG17) peptides. HB-EGF gene and protein expressions were measured by quantitative reverse transcription-PCR, immunocytochemistry, and Western blotting, and HB-EGF shedding by ELISA. Matrix metalloproteinases MMP-2, MMP-3, and MMP-9 were assessed by Western blotting. Chick chorioallantoic membrane studies measured the in vivo angiogenic potential of gastrin and microvessel density (MVD) was assessed in large intestinal premalignant lesions of hypergastrinaemic APCMin mice. MVD was also examined in human colorectal tumor and resection margin normals and correlated with serum-amidated gastrin levels (via RIA) and HB-EGF protein expression (via immunohistochemistry). HUVEC cells showed increased tubule and node formation in response to G17 (186%, P & lt; 0.0005) and GlyG17 (194%, P & lt; 0.0005). This was blockaded by the cholecystokinin-2 receptor (CCK-2R) antagonists JB95008 and JMV1155 and by antiserum to gastrin and HB-EGF. Gastrin peptides increased HB-EGF gene expression/protein secretion in HUVEC and microvessel-derived endothelial cells and the levels of MMP-2, MMP-3, and MMP-9. G17 promoted angiogenesis in a chorioallantoic membrane assay, and MVD was significantly elevated in premalignant large intestinal tissue from hypergastrinaemic APCMin mice. In terms of the clinical situation, MVD in the normal mucosa surrounding colorectal adenocarcinomas correlated with patient serum gastrin levels and HB-EGF expression. Gastrin peptides, acting through the CCK-2R, enhance endothelial cell activity in models of angiogenesis. This may be mediated through enhanced expression and shedding of HB-EGF, possibly resulting from increased activity of matrix metalloproteinases. This proangiogenic effect translates to the in vivo and human situations and may add to the tumorigenic properties attributable to gastrin peptides in malignancy. (Cancer Res 2006; 66(7): 3504-12)
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2006
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 81, No. 13_Supplement ( 2021-07-01), p. 87-87
    Abstract: Inhibitors of tumor metabolism have shown promise in the pre-clinical and clinical settings, however success is likely dependent upon identification of responsive patient populations to drive maximum benefit. We have previously disclosed the development of the GLS1 inhibitor, IPN60090, which is currently progressing through Phase 1 studies (NCT03894540). Current efforts are focused on developing additional patient stratification biomarkers to define those patients who will most benefit from IPN60090 single-agent treatment or combination strategies. Here we demonstrate that IPN60090 elicited a specific set of metabolic alterations and selectively inhibited the growth of high grade serous ovarian cancer (HGSOC) models in vitro and in vivo. In IPN60090-sensitive OvCa cell lines, GLS1 inhibition induced glutathione (GSH) depletion, inhibited glutamine anapleurosis (GLN), and altered cell cycle kinetics resulting from depletion of intracellular nucleotide pools and accumulation of DNA damage. Untargeted metabolic profiling of IPN60090-sensitive and -insensitive cell lines revealed that the differential response was driven by the ability of insensitive cell lines to maintain intracellular pools of glutamate (GLU), and consequently GSH, through consumption of aspartate and alanine. We examined two transaminases whose activity may result in aspartate or alanine depletion in cells, asparagine synthetase (ASNS) and glutamate pyruvate transaminase 2 (GPT2), and found that ASNS expression predicted response to IPN60090. In vivo, growth of both subcutaneous and orthotopic ASNSlow OvCa tumors was inhibited by IPN60090, while ASNShigh tumors were resistant to IPN60090. Leveraging tissue microarrays from tumor biopsies collected at MD Anderson Cancer Center, we developed an IHC assay for ASNS to determine the percentage of ASNS null or low patients that would benefit from IPN60090 treatment. Upon validation and CLIA certification, this assay was deployed across archival patient biopsies collected in the Department of Investigational Cancer Therapeutics at MD Anderson Cancer Center, and identified patients who showed no ASNS staining (ASNSnull) in their tumors, suggesting that they may benefit from treatment with IPN60090. Taken together, through a comprehensive translational effort we have identified ASNS as a predictive biomarker of response to GLS1 inhibitor-based therapeutic regimens. Citation Format: Nakia D. Spencer, Christopher A. Bristow, Virginia Giulani, Meredith A. Miller, Alessandro Carugo, Angela L. Harris, Rosalba Minelli, Ningpeng Feng, Qing Chang, Michael J. Soth, Kang Le, John N. Weinstein, Philip L. Lorenzi, Jinsong Liu, Wei-Lien Wang, Timothy A. Yap, Giulio Draetta, Philip Jones, Timothy P. Heffernan, Jeffrey J. Kovacs. Asparagine synthetase (ASNS) expression predicts response to the GLS1 inhibitor IPN60090 in ovarian cancer through selective modulation of redox homeostasis [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 87.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 27, No. 9 ( 2021-05-01), p. 2459-2469
    Abstract: Tumor hypoxia fuels an aggressive tumor phenotype and confers resistance to anticancer treatments. We conducted a clinical trial to determine whether the antimalarial drug atovaquone, a known mitochondrial inhibitor, reduces hypoxia in non–small cell lung cancer (NSCLC). Patients and Methods: Patients with NSCLC scheduled for surgery were recruited sequentially into two cohorts: cohort 1 received oral atovaquone at the standard clinical dose of 750 mg twice daily, while cohort 2 did not. Primary imaging endpoint was change in tumor hypoxic volume (HV) measured by hypoxia PET-CT. Intercohort comparison of hypoxia gene expression signatures using RNA sequencing from resected tumors was performed. Results: Thirty patients were evaluable for hypoxia PET-CT analysis, 15 per cohort. Median treatment duration was 12 days. Eleven (73.3%) atovaquone-treated patients had meaningful HV reduction, with median change −28% [95% confidence interval (CI), −58.2 to −4.4]. In contrast, median change in untreated patients was +15.5% (95% CI, −6.5 to 35.5). Linear regression estimated the expected mean HV was 55% (95% CI, 24%–74%) lower in cohort 1 compared with cohort 2 (P = 0.004), adjusting for cohort, tumor volume, and baseline HV. A key pharmacodynamics endpoint was reduction in hypoxia-regulated genes, which were significantly downregulated in atovaquone-treated tumors. Data from multiple additional measures of tumor hypoxia and perfusion are presented. No atovaquone-related adverse events were reported. Conclusions: This is the first clinical evidence that targeting tumor mitochondrial metabolism can reduce hypoxia and produce relevant antitumor effects at the mRNA level. Repurposing atovaquone for this purpose may improve treatment outcomes for NSCLC.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 21 ( 2020-11-01), p. 4840-4853
    Abstract: Src homology 2 domain-containing phosphatase (SHP2) is a phosphatase that mediates signaling downstream of multiple receptor tyrosine kinases (RTK) and is required for full activation of the MAPK pathway. SHP2 inhibition has demonstrated tumor growth inhibition in RTK-activated cancers in preclinical studies. The long-term effectiveness of tyrosine kinase inhibitors such as the EGFR inhibitor (EGFRi), osimertinib, in non–small cell lung cancer (NSCLC) is limited by acquired resistance. Multiple clinically identified mechanisms underlie resistance to osimertinib, including mutations in EGFR that preclude drug binding as well as EGFR-independent activation of the MAPK pathway through alternate RTK (RTK-bypass). It has also been noted that frequently a tumor from a single patient harbors more than one resistance mechanism, and the plasticity between multiple resistance mechanisms could restrict the effectiveness of therapies targeting a single node of the oncogenic signaling network. Here, we report the discovery of IACS-13909, a specific and potent allosteric inhibitor of SHP2, that suppresses signaling through the MAPK pathway. IACS-13909 potently impeded proliferation of tumors harboring a broad spectrum of activated RTKs as the oncogenic driver. In EGFR-mutant osimertinib-resistant NSCLC models with EGFR-dependent and EGFR-independent resistance mechanisms, IACS-13909, administered as a single agent or in combination with osimertinib, potently suppressed tumor cell proliferation in vitro and caused tumor regression in vivo. Together, our findings provide preclinical evidence for using a SHP2 inhibitor as a therapeutic strategy in acquired EGFRi-resistant NSCLC. Significance: These findings highlight the discovery of IACS-13909 as a potent, selective inhibitor of SHP2 with drug-like properties, and targeting SHP2 may serve as a therapeutic strategy to overcome tumor resistance to osimertinib.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 28, No. 24 ( 2022-12-15), p. 5383-5395
    Abstract: Advanced-stage mucinous ovarian carcinoma (MOC) has poor chemotherapy response and prognosis and lacks biomarkers to aid stage I adjuvant treatment. Differentiating primary MOC from gastrointestinal (GI) metastases to the ovary is also challenging due to phenotypic similarities. Clinicopathologic and gene-expression data were analyzed to identify prognostic and diagnostic features. Experimental Design: Discovery analyses selected 19 genes with prognostic/diagnostic potential. Validation was performed through the Ovarian Tumor Tissue Analysis consortium and GI cancer biobanks comprising 604 patients with MOC (n = 333), mucinous borderline ovarian tumors (MBOT, n = 151), and upper GI (n = 65) and lower GI tumors (n = 55). Results: Infiltrative pattern of invasion was associated with decreased overall survival (OS) within 2 years from diagnosis, compared with expansile pattern in stage I MOC [hazard ratio (HR), 2.77; 95% confidence interval (CI), 1.04–7.41, P = 0.042]. Increased expression of THBS2 and TAGLN was associated with shorter OS in MOC patients (HR, 1.25; 95% CI, 1.04–1.51, P = 0.016) and (HR, 1.21; 95% CI, 1.01–1.45, P = 0.043), respectively. ERBB2 (HER2) amplification or high mRNA expression was evident in 64 of 243 (26%) of MOCs, but only 8 of 243 (3%) were also infiltrative (4/39, 10%) or stage III/IV (4/31, 13%). Conclusions: An infiltrative growth pattern infers poor prognosis within 2 years from diagnosis and may help select stage I patients for adjuvant therapy. High expression of THBS2 and TAGLN in MOC confers an adverse prognosis and is upregulated in the infiltrative subtype, which warrants further investigation. Anti-HER2 therapy should be investigated in a subset of patients. MOC samples clustered with upper GI, yet markers to differentiate these entities remain elusive, suggesting similar underlying biology and shared treatment strategies.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Molecular Cancer Therapeutics, American Association for Cancer Research (AACR), Vol. 18, No. 12_Supplement ( 2019-12-01), p. C036-C036
    Abstract: Osimertinib, a third generation EGFR inhibitor, is a front-line therapy for EGFR mutated non-small lung cancer (NSCLC). The long-term effectiveness of osimertinib is limited by acquired resistance. Clinically identified resistance mechanisms include EGFR-dependent mechanisms such as mutations on EGFR that preclude drug binding, and EGFR-independent activation of the MAPK pathway, for instance via activation of alternate RTKs. It has also been noted that frequently a tumor from a single patient harbors more than one resistance mechanism, and the plasticity between the multiple resistance mechanisms will restrict the effectiveness of therapies targeting a single node of the oncogenic signaling network. SHP2 (Src homology 2 domain-containing phosphatase) is a phosphatase that mediates the signaling of multiple RTKs and is required for full activation of the MAPK pathway. Here we report IACS-13909 - a specific and potent allosteric inhibitor of SHP2 - suppresses the signaling of RTK/MAPK pathway. IACS-13909 potently impedes the proliferation of tumors with a broad spectrum of RTKs as the oncogenic driver. Importantly, in NSCLC models with acquired resistance to osimertinib, IACS-13909 administered as a single agent or in combination with osimertinib potently reduces tumor cell proliferation in vitro and in vivo. Together, our findings provide preclinical evidence for using a SHP2 inhibitor as a therapeutic strategy in acquired EGFR inhibitor-resistant NSCLC. Currently, a compound that potently inhibits SHP2 has been selected as the clinical development candidate and is undergoing IND-enabling studies with a projected first-in-human target of early 2020. Citation Format: Yuting Sun, Brooke A Meyers, Sarah B Johnson, Angela L Harris, Barbara Czako, Jason B Cross, Paul G Leonard, Faika Mseeh, Maria E Di Francesco, Connor A Parker, Qi Wu, Christopher A Bristow, Jason P Burke, Caroline C Carrillo, Christopher L Carroll, Qing Chang, Ningping Feng, Sonal Gera, Gao Guang, Justin Kwang-Lay Huang, Yongying Jiang, Zhijun Kang, Jeffrey J Kovacs, Xiaoyan Ma, Pijus K Mandal, Timothy McAfoos, Robert A Mullinax, Michael D Peoples, Vandhana Ramamoorthy, Sahil Seth, Erika Suzuki, Christopher Conrad Williams, Simon S Yu, Andy M Zuniga, Giulio F Draetta, Joseph R Marszalek, Timothy P Heffernan, Nancy E Kohl, Philip Jones. Discovery of IACS-13909, an allosteric SHP2 inhibitor that overcomes multiple mechanisms underlying osimertinib resistance [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics; 2019 Oct 26-30; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2019;18(12 Suppl):Abstract nr C036. doi:10.1158/1535-7163.TARG-19-C036
    Type of Medium: Online Resource
    ISSN: 1535-7163 , 1538-8514
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2062135-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 81, No. 13_Supplement ( 2021-07-01), p. 1102-1102
    Abstract: Metabolic dysregulation is a hallmark of cancer, and recently, increasing evidence has shown a critical role for glutamine metabolism to support the bioenergetics and biosysnthetic needs of tumor and immune cells. We have previously disclosed the development of the GLS1 inhibitor, IPN60090, which is currently advancing through Phase 1 clinical studies (NCT03894540). Metabolic plasticity has been suggested to confer adaptive resistance to metabolic inhibitors and defines mechanisms that could be exploited to enhance therapeutic benefit. To address the clinical problems of innate drug resistance and adaptation, we interrogated metabolic and adaptive responses to IPN60090 in vitro and in vivo. We and others have previously identified KEAP1/NFE2L2 mutant non-small cell lung cancer models as sensitive to GLS1 inhibition. Through an integrated approach, including metabolic, transcriptomic, and proteomic analysis, we have identified molecular pathways that confer resistance to GLS1 inhibition. Nodes in these pathways that drive aquired resistance, may serve as additional patient stratification biomarkers in subsets on NSCLC or provide opportunites for further drug development. Additionally, unbiased in vivo functional genomics screening identified mulitple signaling pathways that act as critical nodes governing resistance to GLS1 inhibition. Drug combinations were tested in vitro and in vivo to identify those that are most synergistic with IPN60090. We found that PI3K/AKT/mTOR signaling is a major contributor to IPN60090 resistance, and we demonstrate that dual targeting of GLS1 and PI3K/AKT/mTOR signaling in tumors with KEAP1/NFE2L2 mutations results in synergistic anti-tumor efficacy. IPN60090, dosed in combination with inhibitors of these pathways yields regressions and off-treatment, durable responses in preclinical models of KEAP1-mutant NSCLC. Based on these data, combination strategies are being developed for Phase 1b expansion cohorts. Citation Format: Jeffrey J. Kovacs, Nakia D. Spencer, Christopher A. Bristow, Alessandro Carugo, Virginia Giluiani, Meredith A. Miller, Angela Harris, Ningping Feng, Michael L. Soth, Kang Le, Elisa de Stanchina, Charles M. Rudin, Giulio Draetta, Timothy A. Yap, Philip Jones, Timothy Heffernan. Integrated approach towards defining mechanism based combinations to guide clinical development of glutaminase inhibitors [abstract] . In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 1102.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 12_Supplement ( 2022-06-15), p. 3636-3636
    Abstract: Introduction: Methotrexate (MTX) is a key component of curative chemotherapy for pediatric acute lymphoblastic leukemia (ALL). However, delivery of MTX is often interrupted by dose-limiting acute neurotoxicity, which manifests as seizures, stroke-like symptoms, or altered mental status. Because incidence and risk factors for MTX neurotoxicity are poorly defined, we evaluated clinical and demographic predictors of MTX neurotoxicity using the multi-ethnic REDIAL Consortium. Methods: The REDIAL cohort includes pediatric patients diagnosed with ALL at six treatment centers in the southwestern U.S. This interim analysis evaluated 756 patients age 1-21 years diagnosed with B-ALL (2005-2018). Electronic health records were reviewed to determine race/ethnicity (Latino, non-Latino White, non-Latino Black, or Other), body mass index, sex, age, and intravenous (IV) MTX dose. Applying Ponte di Legno criteria, acute MTX neurotoxicity was defined as neurologic episodes occurring & lt;21 days from intrathecal or IV MTX, which resulted in MTX treatment modifications. The proportion of patients who experienced MTX neurotoxicity and corresponding 95% confidence interval (CI) was calculated overall and within the induction, post-induction, and maintenance treatment phases. Multivariable logistic regression was used to estimate adjusted odds ratios (aOR) for the association between clinical factors and MTX neurotoxicity. Results: The study population was 56.6% Latino, 52.8% male, 41.4% treated with & gt;5g/m2 IV MTX, and diagnosed at a median age of 5 years. Overall, 15.5% (95% CI: 12.9-18.3%) of patients experienced neurotoxic events (n=117), including 1.9% (n=14, 95% CI: 1.0-3.1%) during induction, 13.0% (n=98, 95% CI: 10.7-15.6%) during post-induction, and 0.7% (n=5, 95% CI: 0.2-1.5%) during maintenance therapy. Ethnic differences were not statistically significant during induction or maintenance phases. Compared to non-Latinos, post-induction neurotoxicity was significantly more frequent among Latinos (aOR = 2.87, 95% CI: 1.68-5.10), with disparities observed during consolidation, interim maintenance and delayed intensification phases. Exposure to & gt;5g/m2 IV MTX (aOR = 2.16, 95% CI: 1.08-3.24) and older age at diagnosis (aOR = 1.16, 95% CI: 1.08-1.24) were also associated with a significantly more post-induction neurotoxicity. No factors evaluated were significantly associated with neurotoxicity during induction and maintenance therapy. Conclusions: MTX neurotoxicity disproportionally affects Latino children during ALL post-induction therapy. Additional work is warranted to identify risk factors for neurotoxicity during induction and maintenance therapy as well as the specific clinical and host biological factors responsible for post-induction ethnic differences in MTX neurotoxicity. Citation Format: Austin L. Brown, Rachel D. Harris, Olga A. Taylor, Melanie B. Bernhardt, Juan C. Bernini, Rodrigo A. Erana, Timothy Griffin, Kenneth Heym, Van T. Huynh, Kathleen Ludwig, Avner Meoded, Sandi L. Pruitt, Philip J. Lupo, Karen R. Rabin, Michael E. Scheurer. Ethnic disparities in methotrexate neurotoxicity during pediatric acute lymphoblastic leukemia therapy: A report from the Reducing Ethnic Disparities in Acute Leukemia (REDIAL) Consortium [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 3636.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...