GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (3)
  • 1
    In: Cancer Immunology Research, American Association for Cancer Research (AACR), Vol. 7, No. 8 ( 2019-08-01), p. 1371-1380
    Abstract: Antibodies targeting CTLA-4 induce durable responses in some patients with melanoma and are being tested in a variety of human cancers. However, these therapies are ineffective for a majority of patients across tumor types. Further understanding the immune alterations induced by these therapies may enable the development of novel strategies to enhance tumor control and biomarkers to identify patients most likely to respond. In several murine models, including colon26, MC38, CT26, and B16 tumors cotreated with GVAX, anti–CTLA-4 efficacy depends on interactions between the Fc region of CTLA-4 antibodies and Fc receptors (FcR). Anti–CTLA-4 binding to FcRs has been linked to depletion of intratumoral T regulatory cells (Treg). In agreement with previous studies, we found that Tregs infiltrating CT26, B16-F1, and autochthonous BrafV600EPten−/− melanoma tumors had higher expression of surface CTLA-4 (sCTLA-4) than other T-cell subsets, and anti–CTLA-4 treatment led to FcR-dependent depletion of Tregs infiltrating CT26 tumors. This Treg depletion coincided with activation and degranulation of intratumoral natural killer cells. Similarly, in non–small cell lung cancer (NSCLC) and melanoma patient-derived tumor tissue, Tregs had higher sCTLA-4 expression than other intratumoral T-cell subsets, and Tregs infiltrating NSCLC expressed more sCTLA-4 than circulating Tregs. Patients with cutaneous melanoma who benefited from ipilimumab, a mAb targeting CTLA-4, had higher intratumoral CD56 expression, compared with patients who received little to no benefit from this therapy. Furthermore, using the murine CT26 model we found that combination therapy with anti–CTLA-4 plus IL15/IL15Rα complexes enhanced tumor control compared with either monotherapy.
    Type of Medium: Online Resource
    ISSN: 2326-6066 , 2326-6074
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2732517-9
    detail.hit.zdb_id: 2732489-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Immunology Research, American Association for Cancer Research (AACR), Vol. 5, No. 1 ( 2017-01-01), p. 84-91
    Abstract: Immune checkpoint inhibitors are promising treatments for patients with a variety of malignancies. Toward understanding the determinants of response to immune checkpoint inhibitors, it was previously demonstrated that the presence of somatic mutations is associated with benefit from checkpoint inhibition. A hypothesis was posited that neoantigen homology to pathogens may in part explain the link between somatic mutations and response. To further examine this hypothesis, we reanalyzed cancer exome data obtained from our previously published study of 64 melanoma patients treated with CTLA-4 blockade and a new dataset of RNA-Seq data from 24 of these patients. We found that the ability to accurately predict patient benefit did not increase as the analysis narrowed from somatic mutation burden, to inclusion of only those mutations predicted to be MHC class I neoantigens, to only including those neoantigens that were expressed or that had homology to pathogens. The only association between somatic mutation burden and response was found when examining samples obtained prior to treatment. Neoantigen and expressed neoantigen burden were also associated with response, but neither was more predictive than somatic mutation burden. Neither the previously described tetrapeptide signature nor an updated method to evaluate neoepitope homology to pathogens was more predictive than mutation burden. Cancer Immunol Res; 5(1); 84–91. ©2016 AACR.
    Type of Medium: Online Resource
    ISSN: 2326-6066 , 2326-6074
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2732517-9
    detail.hit.zdb_id: 2732489-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Immunology Research, American Association for Cancer Research (AACR), Vol. 8, No. 3_Supplement ( 2020-03-01), p. B23-B23
    Abstract: While tumor-reactive CD4+ T cells have been associated with effective immunotherapy responses, accurate prediction of MHC class II-restricted ligands remains a challenge, limiting our ability to harness CD4+ immunity for cancer therapy. To this end, we have developed a state-of-the-art MHC class II binding predictor, neonmhc2, trained on HLA-II ligands identified from mass spectrometry (MS) of cell lines engineered to express a single affinity-tagged HLA-II allele. Over 60 HLA-II alleles have been characterized to date. We demonstrate that neonmhc2 outperforms NetMHCIIpan, the current benchmark for class II prediction, in distinguishing 1) HLA-II ligands presented in cell lines and tissues, and critically, 2) immunogenic CD4+ epitopes identified with tetramer-guided epitope mapping. Furthermore, we show that numerous neoantigen peptides that were ranked highly by neonmhc2 but poorly by NetMHCIIpan were immunogenic in an ex vivo induction. We next studied HLA-II antigen processing in order to further boost our ability to predict CD4+ epitopes. We determined a gene-level bias by comparing transcript expression and gene length to the frequency of observations in MS, finding that secreted genes are over-represented in HLA-II ligandomes from tissues. We built numerous primary sequence-based processability predictors trained on MS data, but only achieved significant prediction improvement when using the simple feature of determining if a candidate peptide contained sequence that overlapped a previously observed HLA-II ligand. By combining neonmhc2 binding prediction, transcript expression, gene bias, and the overlap feature in an integrated presentation predictor, we were able to achieve up to a 61-fold increase in ability to predict HLA-II peptides presented from tissue MS data over NetMHCIIpan alone. We also sought to understand which cells are presenting HLA-II ligands in the tumor microenvironment to elucidate the presentation pathway most relevant to immunotherapy. By leveraging publicly available RNA-seq (bulk and single cell), we found that professional antigen-presenting cells rather than tumor cells are primarily responsible for HLA-II presentation. We developed a novel SILAC-based MS workflow to directly interrogate peptides derived from phagocytosed tumor cells that are presented by dendritic cells. The experiment revealed that mitochondrial genes are preferentially presented from phagocytosed cells. In conclusion, by integrating proteomics and genomics data at large scale, we have defined new rules for understanding HLA-II processing and presentation, particularly in the context of the tumor microenvironment. This work should enhance our ability to predict CD4+ epitopes for immunotherapy. Citation Format: Dewi Harjanto, Jennifer G. Abelin, Matthew Malloy, Prerna Suri, Tyler Colson, Scott P. Goulding, Amanda L. Creech, Lia R. Serrano, Gibbs Nasir, Yusuf Nasrullah, Christopher D. McGann, Diana Velez, Ying S. Ting, Asaf Poran, Daniel A. Rothenberg, Sagar Chhangawala, Alex Rubinsteyn, Jeff Hammerbacher, Richard B. Gaynor, Edward F. Fritsch, Rob C. Oslund, Dominik Barthelme, Terri A. Addona, Christina M. Arieta, Michael S. Rooney. Enhanced HLA-II epitope prediction for immunotherapy with novel proteomics and genomics approaches [abstract]. In: Proceedings of the AACR Special Conference on Tumor Immunology and Immunotherapy; 2019 Nov 17-20; Boston, MA. Philadelphia (PA): AACR; Cancer Immunol Res 2020;8(3 Suppl):Abstract nr B23.
    Type of Medium: Online Resource
    ISSN: 2326-6066 , 2326-6074
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2732517-9
    detail.hit.zdb_id: 2732489-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...