GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (13)
Material
Publisher
  • American Association for Cancer Research (AACR)  (13)
Language
Years
Subjects(RVK)
  • 1
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 29, No. 18 ( 2023-09-15), p. 3779-3792
    Abstract: The dynamic interplay between glioblastoma stem cells (GSC) and tumor-associated macrophages (TAM) sculpts the tumor immune microenvironment (TIME) and promotes malignant progression of glioblastoma (GBM). However, the mechanisms underlying this interaction are still incompletely understood. Here, we investigate the role of CXCL8 in the maintenance of the mesenchymal state of GSC populations and reprogramming the TIME to an immunosuppressive state. Experimental Design: We performed an integrative multi-omics analyses of RNA sequencing, GBM mRNA expression datasets, immune signatures, and epigenetic profiling to define the specific genes expressed in the mesenchymal GSC subsets. We then used patient-derived GSCs and a xenograft murine model to investigate the mechanisms of tumor-intrinsic and extrinsic factor to maintain the mesenchymal state of GSCs and induce TAM polarization. Results: We identified that CXCL8 was preferentially expressed and secreted by mesenchymal GSCs and activated PI3K/AKT and NF-κB signaling to maintain GSC proliferation, survival, and self-renewal through a cell-intrinsic mechanism. CXCL8 induced signaling through a CXCR2–JAK2/STAT3 axis in TAMs, which supported an M2-like TAM phenotype through a paracrine, cell-extrinsic pathway. Genetic- and small molecule–based inhibition of these dual complementary signaling cascades in GSCs and TAMs suppressed GBM tumor growth and prolonged survival of orthotopic xenograft-bearing mice. Conclusions: CXCL8 plays critical roles in maintaining the mesenchymal state of GSCs and M2-like TAM polarization in GBM, highlighting an interplay between cell-autonomous and cell-extrinsic mechanisms. Targeting CXCL8 and its downstream effectors may effectively improve GBM treatment.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Discovery, American Association for Cancer Research (AACR), Vol. 10, No. 11 ( 2020-11-01), p. 1722-1741
    Abstract: Meningiomas are the most common primary intracranial tumor with current classification offering limited therapeutic guidance. Here, we interrogated meningioma enhancer landscapes from 33 tumors to stratify patients based upon prognosis and identify novel meningioma-specific dependencies. Enhancers robustly stratified meningiomas into three biologically distinct groups (adipogenesis/cholesterol, mesodermal, and neural crest) distinguished by distinct hormonal lineage transcriptional regulators. Meningioma landscapes clustered with intrinsic brain tumors and hormonally responsive systemic cancers with meningioma subgroups, reflecting progesterone or androgen hormonal signaling. Enhancer classification identified a subset of tumors with poor prognosis, irrespective of histologic grading. Superenhancer signatures predicted drug dependencies with superior in vitro efficacy to treatment based upon the NF2 genomic profile. Inhibition of DUSP1, a novel and druggable meningioma target, impaired tumor growth in vivo. Collectively, epigenetic landscapes empower meningioma classification and identification of novel therapies. Significance: Enhancer landscapes inform prognostic classification of aggressive meningiomas, identifying tumors at high risk of recurrence, and reveal previously unknown therapeutic targets. Druggable dependencies discovered through epigenetic profiling potentially guide treatment of intractable meningiomas. This article is highlighted in the In This Issue feature, p. 1611
    Type of Medium: Online Resource
    ISSN: 2159-8274 , 2159-8290
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2607892-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Discovery, American Association for Cancer Research (AACR), Vol. 11, No. 5 ( 2021-05-01), p. 1192-1211
    Abstract: Glioblastoma (GBM) contains self-renewing GBM stem cells (GSC) potentially amenable to immunologic targeting, but chimeric antigen receptor (CAR) T-cell therapy has demonstrated limited clinical responses in GBM. Here, we interrogated molecular determinants of CAR-mediated GBM killing through whole-genome CRISPR screens in both CAR T cells and patient-derived GSCs. Screening of CAR T cells identified dependencies for effector functions, including TLE4 and IKZF2. Targeted knockout of these genes enhanced CAR antitumor efficacy. Bulk and single-cell RNA sequencing of edited CAR T cells revealed transcriptional profiles of superior effector function and inhibited exhaustion responses. Reciprocal screening of GSCs identified genes essential for susceptibility to CAR-mediated killing, including RELA and NPLOC4, the knockout of which altered tumor–immune signaling and increased responsiveness of CAR therapy. Overall, CRISPR screening of CAR T cells and GSCs discovered avenues for enhancing CAR therapeutic efficacy against GBM, with the potential to be extended to other solid tumors. Significance: Reciprocal CRISPR screening identified genes in both CAR T cells and tumor cells regulating the potency of CAR T-cell cytotoxicity, informing molecular targeting strategies to potentiate CAR T-cell antitumor efficacy and elucidate genetic modifications of tumor cells in combination with CAR T cells to advance immuno-oncotherapy. This article is highlighted in the In This Issue feature, p. 995
    Type of Medium: Online Resource
    ISSN: 2159-8274 , 2159-8290
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2607892-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Discovery, American Association for Cancer Research (AACR), Vol. 12, No. 2 ( 2022-02-01), p. 502-521
    Abstract: Glioblastoma (GBM) is the most lethal primary brain cancer characterized by therapeutic resistance, which is promoted by GBM stem cells (GSC). Here, we interrogated gene expression and whole-genome CRISPR/Cas9 screening in a large panel of patient-derived GSCs, differentiated GBM cells (DGC), and neural stem cells (NSC) to identify master regulators of GSC stemness, revealing an essential transcription state with increased RNA polymerase II–mediated transcription. The YY1 and transcriptional CDK9 complex was essential for GSC survival and maintenance in vitro and in vivo. YY1 interacted with CDK9 to regulate transcription elongation in GSCs. Genetic or pharmacologic targeting of the YY1–CDK9 complex elicited RNA m6A modification–dependent interferon responses, reduced regulatory T-cell infiltration, and augmented efficacy of immune checkpoint therapy in GBM. Collectively, these results suggest that YY1–CDK9 transcription elongation complex defines a targetable cell state with active transcription, suppressed interferon responses, and immunotherapy resistance in GBM. Significance: Effective strategies to rewire immunosuppressive microenvironment and enhance immunotherapy response are still lacking in GBM. YY1-driven transcriptional elongation machinery represents a druggable target to activate interferon response and enhance anti–PD-1 response through regulating the m6A modification program, linking epigenetic regulation to immunomodulatory function in GBM. This article is highlighted in the In This Issue feature, p. 275
    Type of Medium: Online Resource
    ISSN: 2159-8274 , 2159-8290
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2607892-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 18 ( 2017-09-15), p. 4947-4960
    Abstract: Metabolic dysregulation drives tumor initiation in a subset of glioblastomas harboring isocitrate dehydrogenase (IDH) mutations, but metabolic alterations in glioblastomas with wild-type IDH are poorly understood. MYC promotes metabolic reprogramming in cancer, but targeting MYC has proven notoriously challenging. Here, we link metabolic dysregulation in patient-derived brain tumor–initiating cells (BTIC) to a nexus between MYC and mevalonate signaling, which can be inhibited by statin or 6-fluoromevalonate treatment. BTICs preferentially express mevalonate pathway enzymes, which we find regulated by novel MYC-binding sites, validating an additional transcriptional activation role of MYC in cancer metabolism. Targeting mevalonate activity attenuated RAS-ERK–dependent BTIC growth and self-renewal. In turn, mevalonate created a positive feed-forward loop to activate MYC signaling via induction of miR-33b. Collectively, our results argue that MYC mediates its oncogenic effects in part by altering mevalonate metabolism in glioma cells, suggesting a therapeutic strategy in this setting. Cancer Res; 77(18); 4947–60. ©2017 AACR.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Discovery, American Association for Cancer Research (AACR), Vol. 9, No. 9 ( 2019-09-01), p. 1248-1267
    Abstract: Glioblastoma ranks among the most aggressive and lethal of all human cancers. Functionally defined glioma stem cells (GSC) contribute to this poor prognosis by driving therapeutic resistance and maintaining cellular heterogeneity. To understand the molecular processes essential for GSC maintenance and tumorigenicity, we interrogated the superenhancer landscapes of primary glioblastoma specimens and in vitro GSCs. GSCs epigenetically upregulated ELOVL2, a key polyunsaturated fatty-acid synthesis enzyme. Targeting ELOVL2 inhibited glioblastoma cell growth and tumor initiation. ELOVL2 depletion altered cellular membrane phospholipid composition, disrupted membrane structural properties, and diminished EGFR signaling through control of fatty-acid elongation. In support of the translational potential of these findings, dual targeting of polyunsaturated fatty-acid synthesis and EGFR signaling had a combinatorial cytotoxic effect on GSCs. Significance: Glioblastoma remains a devastating disease despite extensive characterization. We profiled epigenomic landscapes of glioblastoma to pinpoint cell state–specific dependencies and therapeutic vulnerabilities. GSCs utilize polyunsaturated fatty-acid synthesis to support membrane architecture, inhibition of which impairs EGFR signaling and GSC proliferation. Combinatorial targeting of these networks represents a promising therapeutic strategy. See related commentary by Affronti and Wellen, p. 1161. This article is highlighted in the In This Issue feature, p. 1143
    Type of Medium: Online Resource
    ISSN: 2159-8274 , 2159-8290
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2607892-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Cancer Discovery, American Association for Cancer Research (AACR), Vol. 11, No. 2 ( 2021-02-01), p. 480-499
    Abstract: Glioblastoma is a universally lethal cancer driven by glioblastoma stem cells (GSC). Here, we interrogated N6-methyladenosine (m6A) mRNA modifications in GSCs by methyl RNA immunoprecipitation followed by sequencing and transcriptome analysis, finding transcripts marked by m6A often upregulated compared with normal neural stem cells (NSC). Interrogating m6A regulators, GSCs displayed preferential expression, as well as in vitro and in vivo dependency, of the m6A reader YTHDF2, in contrast to NSCs. Although YTHDF2 has been reported to destabilize mRNAs, YTHDF2 stabilized MYC and VEGFA transcripts in GSCs in an m6A-dependent manner. We identified IGFBP3 as a downstream effector of the YTHDF2–MYC axis in GSCs. The IGF1/IGF1R inhibitor linsitinib preferentially targeted YTHDF2-expressing cells, inhibiting GSC viability without affecting NSCs and impairing in vivo glioblastoma growth. Thus, YTHDF2 links RNA epitranscriptomic modifications and GSC growth, laying the foundation for the YTHDF2–MYC–IGFBP3 axis as a specific and novel therapeutic target in glioblastoma. Significance: Epitranscriptomics promotes cellular heterogeneity in cancer. RNA m6A landscapes of cancer and NSCs identified cell type–specific dependencies and therapeutic vulnerabilities. The m6A reader YTHDF2 stabilized MYC mRNA specifically in cancer stem cells. Given the challenge of targeting MYC, YTHDF2 presents a therapeutic target to perturb MYC signaling in glioblastoma. This article is highlighted in the In This Issue feature, p. 211
    Type of Medium: Online Resource
    ISSN: 2159-8274 , 2159-8290
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2607892-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 16_Supplement ( 2020-08-15), p. 320-320
    Abstract: The glioblastoma is a complex ecosystem with multiple cell types and an extracellular matrix (ECM) unique to the brain. Dynamic interactions between tumor cells and other non-neoplastic cell types drive the progression of cancer and continuously remodel the local microenvironment. Some major non-neoplastic players in the glioblastoma microenvironment include blood vessels that support tumor growth, several resident central nervous system (CNS) cells such as astrocytes, neurons, and microglia, as well as tumor-associated macrophages, the most substantial non-neoplastic component of glioblastoma. While animal models retain the genomic signature and transcriptome of the original patient tumor tissue, the use of immunocompromised animals inherently limits investigation of the role of immune components within the glioblastoma tissue. Here, we developed a rapid 3D-bioprinting method to construct a clinically relevant multicellular in vitro model to recapitulate the complexity of the glioblastoma microenvironment. The 3D models made of brain-specific materials were constructed with a central core of glioblastoma stem cells, with or without macrophages, surrounded by the resident CNS cells, which served to mimic the brain parenchyma surrounding the tumor tissue. Gene expression and transcriptome analysis demonstrated that both the glioblastoma stem cells and the macrophage precursors responded to the 3D-bioprinted glioblastoma microenvironment and better resembled their counterparts in patient tumor tissue compared to sphere or suspension culture. Furthermore, the four-cell model with macrophages closely resembled patient transcriptional profiles predictive of patient prognosis and drug sensitivity, and better recapitulated the glioblastoma invasiveness and stemness compared to three-cell models without macrophages or sphere cultures. Finally, the 3D-bioprinted models also enabled whole genome CRISPR screening to identify unique functional dependencies not identified in sphere culture controls. The 3D-bioprinting method is highly scalable and reproducible. The multicellular glioblastoma model combines fine spatial control of brain-specific materials and multiple cell types to create a sophisticated human species-matched model that contains both neoplastic and non-neoplastic regions. Citation Format: Min Tang, Qi Xie, Ryan C. Gimple, Briana C. Prager, Zhixin Qiu, Jacob Schimelman, Pengrui Wang, Derrick Lee, Aaron Yu, Tyler E. Miller, Reilly L. Kidwell, Xueyi Wan, Jing Tang, Trevor Tam, Jing Tian, Bingjie Sun, Shaochen Chen, Jeremy Rich. 3D-bioprinting of biomimetic multicellular glioblastoma tissues enable modeling of tumor-immune interactions [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr 320.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2020
    In:  Cancer Research Vol. 80, No. 16_Supplement ( 2020-08-15), p. 5725-5725
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 16_Supplement ( 2020-08-15), p. 5725-5725
    Abstract: Glioblastoma is a highly lethal primary intrinsic brain tumor for which current standard-of-care therapies are merely palliative. Functionally defined glioblastoma stem cells (GSCs) contribute to this poor prognosis by driving therapeutic resistance, maintenance of cellular heterogeneity, and disease recurrence. A deeper appreciation for the specific features that distinguish normal from neoplastic stem cells may inform selective therapeutic targeting. To further understand the molecular processes essential for maintaining cancer stem cell populations, we interrogated the active enhancer landscapes and transcriptional output of GSCs and normal neural stem cells (NSCs) through H3K27ac ChIP-seq and RNA-seq respectively. GSC-specific targets that held prognostic significance in patient datasets and which were essential in whole genome CRISPR screening data implicated endosomal protein sorting as a key feature in GSC biology. Targeting endosomal sorting impaired GSC viability and proliferation and contributed to apoptosis, while NSCs displayed a reduced cell proliferation deficit. Impaired endosomal protein sorting led to a reduction in the mRNA and protein levels of the stem and neuro-developmental transcription factors SOX2 and OLIG2 and reduced self-renewal capacity of GSCs, suggesting a role in the maintenance of stemness. Mechanistically, regulation of endosomal sorting may impact localization and stability of receptor tyrosine kinases and WNT signaling elements to control GSC maintenance. High expression of this endosomal sorting factor is associated with poor glioblastoma patient prognosis, suggesting its clinical importance. Thus, targeting the endosomal sorting pathway may represent a novel therapeutic approach for glioblastoma treatment. Citation Format: Ryan C. Gimple, Guoxin Zhang, Jeremy N. Rich. Epigenetic and transcriptional profiling reveal endosomal protein sorting as a glioblastoma cancer stem cell dependency [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr 5725.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 3 ( 2022-02-01), p. 377-390
    Abstract: Glioblastoma is the most prevalent primary malignant brain tumor in adults and is characterized by poor prognosis and universal tumor recurrence. Effective glioblastoma treatments are lacking, in part due to somatic mutations and epigenetic reprogramming that alter gene expression and confer drug resistance. To investigate recurrently dysregulated genes in glioblastoma, we interrogated allele-specific expression (ASE), the difference in expression between two alleles of a gene, in glioblastoma stem cells (GSC) derived from 43 patients. A total of 118 genes were found with recurrent ASE preferentially in GSCs compared with normal tissues. These genes were enriched for apoptotic regulators, including schlafen family member 11 (SLFN11). Loss of SLFN11 gene expression was associated with aberrant promoter methylation and conferred resistance to chemotherapy and PARP inhibition. Conversely, low SLFN11 expression rendered GSCs susceptible to the oncolytic flavivirus Zika. This discovery effort based upon ASE revealed novel points of vulnerability in GSCs, suggesting a potential alternative treatment strategy for chemotherapy-resistant glioblastoma. Significance: Assessing allele-specific expression reveals genes with recurrent cis-regulatory changes that are enriched in glioblastoma stem cells, including SLFN11, which modulates chemotherapy resistance and susceptibility to the oncolytic Zika virus.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...