GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (8)
  • 1
    In: Cancer Immunology Research, American Association for Cancer Research (AACR), Vol. 9, No. 10 ( 2021-10-01), p. 1141-1157
    Abstract: The use of cytokines for immunotherapy shows clinical efficacy but is frequently accompanied by severe adverse events caused by excessive and systemic immune activation. Here, we set out to address these challenges by engineering a fusion protein of a single, potency-reduced, IL15 mutein and a PD1-specific antibody (anti-PD1-IL15m). This immunocytokine was designed to deliver PD1-mediated, avidity-driven IL2/15 receptor stimulation to PD1+ tumor-infiltrating lymphocytes (TIL) while minimally affecting circulating peripheral natural killer (NK) cells and T cells. Treatment of tumor-bearing mice with a mouse cross-reactive fusion, anti-mPD1–IL15m, demonstrated potent antitumor efficacy without exacerbating body weight loss in B16 and MC38 syngeneic tumor models. Moreover, anti-mPD1–IL15m was more efficacious than an IL15 superagonist, an anti-mPD-1, or the combination thereof in the B16 melanoma model. Mechanistically, anti-PD1–IL15m preferentially targeted CD8+ TILs and single-cell RNA-sequencing analyses revealed that anti-mPD1–IL15m treatment induced the expansion of an exhausted CD8+ TIL cluster with high proliferative capacity and effector-like signatures. Antitumor efficacy of anti-mPD1–IL15m was dependent on CD8+ T cells, as depletion of CD8+ cells resulted in the loss of antitumor activity, whereas depletion of NK cells had little impact on efficacy. The impact of anti-hPD1–IL15m on primary human TILs from patients with cancer was also evaluated. Anti-hPD1–IL15m robustly enhanced the proliferation, activation, and cytotoxicity of CD8+ and CD4+ TILs from human primary cancers in vitro, whereas tumor-derived regulatory T cells were largely unaffected. Taken together, our findings showed that anti-PD1–IL15m exhibits a high translational promise with improved efficacy and safety of IL15 for cancer immunotherapy via targeting PD1+ TILs. See related Spotlight by Felices and Miller, p. 1110.
    Type of Medium: Online Resource
    ISSN: 2326-6066 , 2326-6074
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2732517-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2008
    In:  Molecular Cancer Therapeutics Vol. 7, No. 3 ( 2008-03-01), p. 688-697
    In: Molecular Cancer Therapeutics, American Association for Cancer Research (AACR), Vol. 7, No. 3 ( 2008-03-01), p. 688-697
    Abstract: The efficiency of chemotherapeutic treatments in cancer patients is often impaired by the acquisition of drug resistance. Cancer cells develop drug resistance through dysregulation of one or more genes or cellular pathways. To isolate efficient regulators of drug resistance in tumor cells, we have adopted a genome-wide scanning approach based on the screening of large libraries of artificial transcription factors (ATFs) made of three and six randomly assembled zinc finger domains. Zinc finger libraries were linked to a VP64 activation domain and delivered into a paclitaxel-sensitive tumor cell line. Following drug treatment, several ATFs were isolated that promoted drug resistance. One of these ATFs, 3ZF-1-VP, promoted paclitaxel resistance in cell lines having mutated or inactivated p53, such as MDA-MB-435 and Kaposi's sarcoma cell lines. 3ZF-1-VP also induced strong resistance to etoposide, vincristine, and cisplatinum. Linkage of a repression domain to the selected ATF resulted in enhanced sensitivity to multiple drugs, particularly vincristine, cisplatinum, and 5-fluorouracil. Small interfering RNA–mediated inhibition of p53 revealed that 3ZF-1-VP activated both p53-dependent and p53-independent mechanisms to promote survival, whereas other ATF required intact p53. Real-time expression analysis and DNA microarrays showed that several ATFs up-regulated targets of p53, such as the cyclin-dependent kinase inhibitor p21WAF1/CIP1, and genes participating in the p14ARF-MDM2-p53 tumor suppressor pathway, such as hDMP1. Thus, ATF can be used to map genes and pathways involved in drug resistance phenotypes and have potential as novel therapeutic agents to inhibit drug resistance. [Mol Cancer Ther 2008;7(3):688–97]
    Type of Medium: Online Resource
    ISSN: 1535-7163 , 1538-8514
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2008
    detail.hit.zdb_id: 2062135-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 74, No. 19_Supplement ( 2014-10-01), p. 1797-1797
    Abstract: Activation of p53 by blocking the p53-Mdm2 interaction using non-peptidic small-molecule inhibitors is being pursued as a promising cancer therapeutic strategy. In the present study, we show the identification of NVP-CGM097, a novel, highly optimized, and selective inhibitor of the p53-Mdm2 interaction. NVP-CGM097 binds to human Mdm2 protein with a Ki value of 1.3 nM, activates p53 in human cells and induces robust p53-dependent cell cycle arrest and apoptosis in human p53 wild-type tumor cells. Its activity and selectivity has been tested and confirmed across a large panel of cancer cell lines from the Cancer Cell Line Encyclopedia. Importantly, NVP-CGM097 displays desirable pharmacokinetic and pharmacodynamic profiles in animals together with excellent oral bioavailability, which triggers rapid and sustained activation of p53-dependent pharmacodynamic biomarkers resulting in tumor regression in multiple xenografted models of p53 wild-type human cancer. The validation and understanding of its mechanism of action, the overall favorable drug-like properties and the characterization of its on-target toxicological profile in preclinical species strongly supported the initiation of Phase I clinical trials with NVP-CGM097 in pre-selected patients with p53 wild-type tumors. Citation Format: Sebastien Jeay, Joerg Berghausen, Nicole Buschmann, Patrick Chène, Robert Cozens, Dirk Erdmann, Stéphane Ferretti, Pascal Furet, Tobias Gabriel, François Gessier, Diana Graus-Porta, Francesco Hofmann, Philipp Holzer, Moriko Ito, Edgar Jacoby, Michael Jensen, Joerg Kallen, Marc Lang, Joanna Lisztwan, Masato Murakami, Carole Pissot-Soldermann, Stephan Ruetz, Caroline Rynn, Dario Sterker, Stefan Stutz, Thérèse Valat, Marion Wiesmann, Keiichi Masuya. Discovery of NVP-CGM097, a highly potent and optimized small molecule inhibitor of Mdm2 under evaluation in a Phase I clinical trial. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr 1797. doi:10.1158/1538-7445.AM2014-1797
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2014
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Molecular Cancer Therapeutics, American Association for Cancer Research (AACR), Vol. 13, No. 5 ( 2014-05-01), p. 1117-1129
    Abstract: Somatic PIK3CA mutations are frequently found in solid tumors, raising the hypothesis that selective inhibition of PI3Kα may have robust efficacy in PIK3CA-mutant cancers while sparing patients the side-effects associated with broader inhibition of the class I phosphoinositide 3-kinase (PI3K) family. Here, we report the biologic properties of the 2-aminothiazole derivative NVP-BYL719, a selective inhibitor of PI3Kα and its most common oncogenic mutant forms. The compound selectivity combined with excellent drug-like properties translates to dose- and time-dependent inhibition of PI3Kα signaling in vivo, resulting in robust therapeutic efficacy and tolerability in PIK3CA-dependent tumors. Novel targeted therapeutics such as NVP-BYL719, designed to modulate aberrant functions elicited by cancer-specific genetic alterations upon which the disease depends, require well-defined patient stratification strategies in order to maximize their therapeutic impact and benefit for the patients. Here, we also describe the application of the Cancer Cell Line Encyclopedia as a preclinical platform to refine the patient stratification strategy for NVP-BYL719 and found that PIK3CA mutation was the foremost positive predictor of sensitivity while revealing additional positive and negative associations such as PIK3CA amplification and PTEN mutation, respectively. These patient selection determinants are being assayed in the ongoing NVP-BYL719 clinical trials. Mol Cancer Ther; 13(5); 1117–29. ©2014 AACR.
    Type of Medium: Online Resource
    ISSN: 1535-7163 , 1538-8514
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2014
    detail.hit.zdb_id: 2062135-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 74, No. 19_Supplement ( 2014-10-01), p. 1798-1798
    Abstract: An effective strategy to restore p53 activity in cancer cells containing wild type p53 is to inhibit the Mdm2-p53 protein-protein interaction (PPI). NVP-CGM097 is a novel PPI inhibitor under evaluation in a Phase I clinical trial. It binds to the p53 binding-site of the Mdm2 protein, disrupting the interaction between both proteins, leading to an activation of the p53 pathway. The main biophysical and biochemical inhibitory characteristics of NVP-CGM097 are presented here. These include an affinity constant for Mdm2 in the nanomolar range and a selectivity of 3 orders of magnitude vs. Mdm4. The binding kinetics of NVP-CGM097 to Mdm2 are characterized by a high association rate constant (Kon =37 x 106 M-1.s-1) and a moderate dissociation rate constant (Koff =0.071 s-1). Additionally, NVP-CGM097 exhibits an 8-fold greater affinity for Mdm2 over Nutlin-3 due to a longer residence time of the Mdm2-inhibitor complex. Moreover, biochemical studies have revealed the species specificity of NVP-CGM097 with human Mdm2 being inhibited more strongly than the dog, mouse or rat forms of the protein. This was confirmed in cellular assays where NVP-CGM097 treatment resulted in induction of p53 target gene expression (p21, PUMA and Mdm2) only in human, but not in dog, mouse or rat cell lines. Citation Format: Thérèse Valat, Keiichi Masuya, Frédéric Baysang, Geneviève Albrecht, Nicole Buschmann, Dirk Erdmann, Pascal Furet, Tobias Gabriel, François Gessier, Francesco Hofmann, Philipp Holzer, Joerg Kallen, Carole Pissot-Solderman, Stefan Stutz, Patrick Chène, Sébastien Jeay. Mechanistic study of NVP-CGM097: a potent, selective and species specific inhibitor of p53-Mdm2. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr 1798. doi:10.1158/1538-7445.AM2014-1798
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2014
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 76, No. 14_Supplement ( 2016-07-15), p. 1239-1239
    Abstract: An effective strategy to restore p53 activity in cancer cells containing wild type p53 is to inhibit the Mdm2-p53 protein-protein interaction (PPI). NVP-HDM201 is a novel PPI inhibitor currently under evaluation in a Phase I clinical trial. It binds to the p53 binding-site of the Mdm2 protein, disrupting the interaction of the two proteins and leading to the activation of the p53 pathway. NVP-HDM201 belongs to a novel chemical series with a distinct biophysical and biochemical profile. Affinity constant of NVP-HDM201 for Mdm2 is in the picomolar range, with a selectivity ratio greater than a 10000-fold vs. Mdm4. Analysis of its binding mode provides evidence for a distinct set of critical interactions between the small molecule and its target, as compared with our other Mdm2 inhibitor NVP-CGM097, and explains as to why NVP-HDM201 binds equally to human, mouse, rat and dog Mdm2. Characterization of its binding kinetics indicates that the optimized interactions of NVP-HDM201 with Mdm2 protein are responsible for the increased stabilization of the complex resulting in high potency against Mdm2. This feature, together with favorable physicochemical and drug-like properties, supported the selection of NVP-HDM201 for clinical development. Citation Format: Thérèse Stachyra-Valat, Frédéric Baysang, Anne-Cécile D’Alessandro, Erdmann Dirk, Pascal Furet, Vito Guagnano, Joerg Kallen, Lukas Leder, Robert Mah, Keiichi Masuya, Stefan Stutz, Andrea Vaupel, Francesco Hofmann, Patrick Chène, Sébastien Jeay, Philipp Holzer. NVP-HDM201: Biochemical and biophysical profile of a novel highly potent and selective PPI inhibitor of p53-Mdm2. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 1239.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Molecular Cancer Therapeutics, American Association for Cancer Research (AACR), Vol. 9, No. 7 ( 2010-07-01), p. 1945-1955
    Abstract: The recent discovery of an acquired activating point mutation in JAK2, substituting valine at amino acid position 617 for phenylalanine, has greatly improved our understanding of the molecular mechanism underlying chronic myeloproliferative neoplasms. Strikingly, the JAK2V617F mutation is found in nearly all patients suffering from polycythemia vera and in roughly every second patient suffering from essential thrombocythemia and primary myelofibrosis. Thus, JAK2 represents a promising target for the treatment of myeloproliferative neoplasms and considerable efforts are ongoing to discover and develop inhibitors of the kinase. Here, we report potent inhibition of JAK2V617F and JAK2 wild-type enzymes by a novel substituted quinoxaline, NVP-BSK805, which acts in an ATP-competitive manner. Within the JAK family, NVP-BSK805 displays more than 20-fold selectivity towards JAK2 in vitro, as well as excellent selectivity in broader kinase profiling. The compound blunts constitutive STAT5 phosphorylation in JAK2V617F-bearing cells, with concomitant suppression of cell proliferation and induction of apoptosis. In vivo, NVP-BSK805 exhibited good oral bioavailability and a long half-life. The inhibitor was efficacious in suppressing leukemic cell spreading and splenomegaly in a Ba/F3 JAK2V617F cell-driven mouse mechanistic model. Furthermore, NVP-BSK805 potently suppressed recombinant human erythropoietin-induced polycythemia and extramedullary erythropoiesis in mice and rats. Mol Cancer Ther; 9(7); 1945–55. ©2010 AACR.
    Type of Medium: Online Resource
    ISSN: 1535-7163 , 1538-8514
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2010
    detail.hit.zdb_id: 2062135-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Molecular Cancer Therapeutics, American Association for Cancer Research (AACR), Vol. 20, No. 12_Supplement ( 2021-12-01), p. P124-P124
    Abstract: RAS is the most frequently mutated oncogene in cancer. KRAS G12C mutations are most prevalent in lung adenocarcinoma (~13%) and colorectal adenocarcinoma (~4%), and occur less commonly in other solid tumor malignancies. First generation KRASG12C inhibitors show anti-tumor activity in early phase clinical trials. However, the emergence of resistance, mediated at least in part by RAS gene mutations that disrupt inhibitor binding and reactivation of downstream pathways, limit the duration of response. Here we report the identification of JDQ443 (NVP-JDQ443), a novel KRASG12C inhibitor which binds under the switch II loop with a novel binding mode, exploiting unique interactions with the KRASG12C protein compared to sotorasib and adagrasib. JDQ443 potently inhibits KRASG12C cellular signaling and proliferation in a mutant selective manner by irreversibly trapping the GDP-bound state of KRASG12C through formation of a covalent bond with cysteine at position 12. Consistent with its mechanism as an irreversible inhibitor, JDQ443 shows sustained target occupancy (TO) in vivo (KRASG12C TO t1/2 ~ 66 h in the MiaPaCa2 model) despite a blood half-life of ~ 2 hours, and exhibits a linear PK/PD relationship. JDQ443 has dose-dependent anti-tumor activity in mice bearing KRAS G12C mutated tumor xenografts comparable to sotorasib and adagrasib. In mouse, rat, and dog, JDQ443 is orally bioavailable, achieves exposures in a range predicted to confer anti-tumor activity, and is well-tolerated. Continuous delivery of JDQ443 using mini-pump administration demonstrates that area under the curve (AUC), rather than maximal concentration (Cmax), is the driver of efficacy. Combination of JDQ443 with the SHP2 inhibitor TNO155 further increases KRAS G12C target occupancy in vivo, enhanced pre-clinical anti-tumor activity, and delayed the emergence of resistance in xenografts. A genome-wide CRISPR screen in 5 KRAS G12C mutated lung cancer cell lines identifies novel mechanisms of resistance to the KRAS/SHP2 drug combination. Furthermore, the characterization of JDQ443 alone and in combination with TNO155 in BaF/3 pools addicted to KRAS alleles that have previously been shown to mediate resistance to adagrasib in clinical samples will be discussed. Collectively, these data show that JDQ443 is a potent, mutant-selective, covalent irreversible KRASG12C inhibitor with favorable pharmaceutical properties. A phase Ib/II clinical trial of JDQ443 alone and in combination with TNO155 in patients with advanced solid tumors harboring the KRAS G12C mutation is ongoing (NCT04699188). Citation Format: Saskia M. Brachmann, Andreas Weiss, Daniel A. Guthy, Kim Beyer, Johannes Voshol, Michel Maira, Anirudh Prahallad, Diana Graus Porta, Christian Schnell, Nils Ostermann, Andrea Vaupel, Marc Gerspacher, Catherine Leblanc, Dirk Erdmann, Dario Sterker, Grainne Kerr, Giovannoni Jerome, Victoria Head, Rowan Stringer, Ruben De Kanter, Kearns Jeff, Danielle Roman, Toni Widmer, Peter Wessels, Eloisa Jimenez Nunez, Richard Sedrani, Frederic Zecri, Francesco Hofmann, Jeff Engleman, Edwige Lorthiois, Simona Cotesta. JDQ443, a covalent irreversible inhibitor of KRAS G12C, exhibits a novel binding mode and demonstrates potent anti-tumor activity and favorable pharmacokinetic properties in preclinical models [abstract]. In: Proceedings of the AACR-NCI-EORTC Virtual International Conference on Molecular Targets and Cancer Therapeutics; 2021 Oct 7-10. Philadelphia (PA): AACR; Mol Cancer Ther 2021;20(12 Suppl):Abstract nr P124.
    Type of Medium: Online Resource
    ISSN: 1535-7163 , 1538-8514
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2062135-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...