GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (2)
  • 1
    In: Molecular Cancer Therapeutics, American Association for Cancer Research (AACR), Vol. 12, No. 11_Supplement ( 2013-11-01), p. B5-B5
    Abstract: Glioblastoma multiforme (GBM), the most aggressive glioma, requires active angiogenesis for growth and survival. Bone morphogenetic proteins (BMPs), members of the TGF-β superfamily, have numerous biological activities including control of growth, differentiation, and vascular development. Previously, we demonstrated the use of a BMP7 variant (BMP7v) to differentiate glioblastoma stem-like cells (GSLCs) and significantly reduce their tumorigenic potential (Tate and Pallini et al. 2012). Using an in vitro co-culture endothelial cord formation assay, a surrogate of angiogenesis, and its cognate in vivo model, we investigated the role of BMP7v in VEGF, basic FGF (bFGF), tumor-driven angiogenesis. Furthermore, we explored the effect of BMP7v on angiogenesis in GSLC Matrigel plugs to further establish the relevance of the BMP7 effect in a pathological setting. BMP7v treatment resulted in disruption of neo-endothelial cord formation and regression of existing bFGF established cords in vitro. In addition, pre-treatment of endothelial cells with BMP7v led to a significant reduction in their cord forming ability, indicating a direct effect of BMP7v on endothelial cell function. While BMP7v activated the canonical Smad signaling pathway in endothelial cells, targeted gene knockdown using shRNA directed against Smad 4 suggested this pathway is not required to mediate the anti-angiogenic effect of BMP7v. BMP7v decreased endothelial cell migration and down regulated expression of the receptor tyrosine kinases involved in VEGF and FGF angiogenic signaling, VEGFR2 and FGFR1, respectively. Importantly, in an in vivo angiogenic plug assay that serves as a measurement of functional angiogenesis, BMP7v significantly decreased hemoglobin content. In addition, BMP7v significantly decreased angiogenesis in GSLC Matrigel plugs indicating efficacy in a more relevant cancer setting. These data support BMP7v as a potent anti-angiogenic molecule, and the reduction in GSLC tumorigenicity may be due in part to reduced angiogenesis upon BMP7v treatment. Future experiments will attempt to further define the mechanism underlying BMP7v's anti-angiogenic effect. Citation Information: Mol Cancer Ther 2013;12(11 Suppl):B5. Citation Format: Courtney Tate, Jacquelyn McEntire, Roberto Pallini, Lisa Wyss, Wayne Blosser, Eliza Vakana, Giorgio D'Alessandris, Liliana Morgante, Stefano Giannetti, Luigi Larocca, Giorgio Stassi, Antonina Benfante, Maria Colorito, Ruggero De Maria, Scott Rowlinson, Louis Stancato. A BMP7 variant inhibits angiogenesis in vitro and in vivo in part by downregulating VEGFR2 and FGFR1 expression in endothelial cells. [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2013 Oct 19-23; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2013;12(11 Suppl):Abstract nr B5.
    Type of Medium: Online Resource
    ISSN: 1535-7163 , 1538-8514
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2013
    detail.hit.zdb_id: 2062135-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 12_Supplement ( 2022-06-15), p. 5213-5213
    Abstract: Increasing clinical use of immune checkpoint inhibitors testifies to the importance of modulating the immune TME to obtain meaningful anti-tumor immune responses. Acting only on T lymphocytes may, however, not be sufficient, e.g. in immunologically-cold tumors or due to de novo or acquired resistance. Moreover, immune-related AEs remain hurdles of T cell therapies. To overcome these limitations and to awaken the immune system in an agnostic way against the tumor, we have developed a genetically modified cell-based autologous hematopoietic stem cell platform (Temferon) delivering immunotherapeutic payloads into the TME through Tie-2 expressing monocytes (TEMs), a subset of tumor infiltrating macrophages. TEM-GBM is an ongoing open-label, Phase 1/2a dose-escalating study evaluating the safety & efficacy of Temferon in up to 21 newly diagnosed patients with glioblastoma & unmethylated MGMT promoter assigned to 7 different cohorts (3 pts each) differing by Temferon dose (0.5-4.0x106/kg) and conditioning regimen (BCNU+ or Busulfan+Thiotepa). By Oct 15th, 2021, 15 pts (cohort 1-5) had received escalating doses of Temferon with a median follow up of 267 days (range: 60-749). Rapid engraftment and hematological recovery from nonmyeloablative conditioning occurred in all pts. Temferon-derived differentiated cells, as determined by the presence of vector genomes in the DNA, were found at increasing proportions in PB and BM, reaching up to 30% at 1 month for the highest cohorts tested (2.0x106/kg) and persisting up to 18 months, albeit at lower levels. Despite the significant proportion of engineered cells, only very low median concentrations of IFNα were detected in the plasma (D+30, 5.9; D+90, 8.8pg/mL) and in the cerebrospinal fluid (D+30, 1.5; D+90, 2.4pg/mL), indicating tight regulation of vector expression. SAEs were mostly attributed to conditioning chemotherapy (e.g. infections) or disease progression (e.g. seizures). 1 SUSAR (persistent GGT elevation) has occurred. Median OS is 14 mth from surgery (11 mth post Temferon). Four pts from the low dose cohorts underwent 2nd surgery. These recurrent tumors contained gene-marked cells and expressed IFN-responsive genes, indicative of local IFNα release by TEMs. In 1 pt, a stable lesion (as defined by MRI) had a higher proportion of T cells & TEMs, an increased IFN-response signature and myeloid re-programming revealed by scRNAseq, as compared to a synchronous, progressing tumor. TCR sequencing of blood and tumor samples showed a post-treatment increase in the cumulative frequency of tumor-associated T cell clones identified in 1st and 2nd surgery specimens (up to 4 out of 9 subjects). These results provide initial evidence for on-target activity of Temferon in GBM, to be consolidated with longer follow up in the higher dose cohorts. Citation Format: Bernhard Gentner, Gaetano Finocchiaro, Francesca Farina, Marica Eoli, Alessia Capotondo, Elena Anghileri, Matteo Barcella, Maria Grazia Bruzzone, Matteo Giovanni Carrabba, Valeria Cuccarini, Giorgio D'Alessandris, Francesco Di Meco, Valeria Ferla, Paolo Ferroli, Filippo Gagliardi, Federico Legnani, Pietro Mortini, Matteo Maria Naldini, Alessandro Olivi, Roberto Pallini, Monica Patanè, Rosina Paterra, Bianca Pollo, Marco Saini, Silvia Snider, Valentina Brambilla, Stefania Mazzoleni, Andrew Zambanini, Carlo Russo, Luigi Naldini, Fabio Ciceri. Genetically modified Tie-2 expressing monocytes target IFN-α2 to the glioblastoma tumor microenvironment (TME): Preliminary data from the TEM-GBM Phase 1/2a study [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 5213.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...