GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (12)
  • 1
    In: Molecular Cancer Research, American Association for Cancer Research (AACR), Vol. 21, No. 5_Supplement ( 2023-05-01), p. B034-B034
    Abstract: Direct inhibitors of mutationally activated KRAS are currently under intense preclinical and clinical development, with one KRASG12C mutant-selective inhibitor approved. However, treatment-associated resistance to KRASG12C inhibitors has been reported, with ~60% of relapsed patients acquiring mutations in signaling components both upstream and downstream, and at the level of RAS itself, that led to reactivation of RAF-MEK-ERK and PI3K-AKT effector pathways. Unexpectedly, we found that ectopic expression of constitutively activated MEK1, ERK1 or ERK2, but not AKT1, drove near-complete resistance to direct inhibitors of KRASG12C or KRASG12D in KRAS-mutant pancreatic ductal adenocarcinoma (PDAC). Despite comprehensive studies, how ERK supports KRAS-dependent cancer growth remains poorly understood. Therefore, we focused on delineating the ERK-dependent phosphoproteome. We treated a panel of six KRAS-mutant PDAC cell lines acutely (1 h) and long-term (24 h) with the highly selective ERK1/2 inhibitor SCH772984. Our proteomics analyses identified 5,117 phosphosites on 2,252 proteins significantly dysregulated by ERK inhibition. We first compared our PDAC ERK phosphoproteome with a recent compendium of published direct/indirect ERK substrates identified in non-PDAC cells and found, surprisingly, only 12% overlap. Thus, our dataset substaintially extends the complexity of ERK-regulated phosphoproteins, in part, reflecting a pancreatic cancer selective profile. To elucidate the kinase network that drives our PDAC ERK-dependent phosphoproteome, we utilized our newly described global atlas of kinase-substrate specificities and reported kinase-substrate interaction datasets. This revealed a highly dynamic kinome dominated by ERK at 1 h, then dominated by ERK-regulation of CDK1-6 cell cycle components and RHO GTPase signaling. Next, we established the subcellular distribution of the PDAC ERK phosphoproteome, then evaluated data from DepMap, and found enrichment of nuclear ERK substrates that displayed strong dependencies in PDAC. We also determined the KRASG12C-regulated phosphoproteome in pancreatic, lung, and colorectal cancer cells using the KRASG12C selective inhibitor MRTX1257. We used our global atlas of kinase-motif specificities and ERK-regulated phosphoproteome to determine KRAS-regulated signaling pathways in KRASG12C mutant cancers. We found a high correlation between KRAS- and ERK-regulated phosphorylations, primarily driven by CDK substrates. However, we also noted key differences, principally in DNA damage response pathways not identified in our ERK-regulated phosphoproteome. Finally, we performed a high-throughput drug sensitivity and resistance screen of (DSRT) comprised of & gt;500 clinically actionable drugs in combination with a KRASG12C inhibitor, and found ERK inhibitors as top hits. In summary, our studies establish a comprehensive profile of KRAS-ERK signaling output that may define new therapeutic targets for targeting KRAS- and ERK-dependent cancer growth. Citation Format: Jennifer E. Klomp, Jeff A. Klomp, Nathaniel J. Diehl, Cole A. Edwards, Kristina Drizyte-Miller, Priya S. Hibshman, Runying Yang, Alexis J. Morales, Khalilah E. Taylor, Mariaelena Pierobon, Emanuel F. Petricoin III, Johnson L. Jared, Emily M. Huntsman, Tomer M. Yaron, Markus Vähä-Koskela, Laura E. Herring, Alex W. Prevatte, Natalie K. Barker, Lee M. Graves, Wennerberg Krister, Lewis C. Cantley, James G. Christensen, Adrienne D. Cox, Channing J. Der, Clint A. Stalnecker. Determination of KRAS- and ERK-regulated phosphoproteomes in KRAS-mutant cancers [abstract]. In: Proceedings of the AACR Special Conference: Targeting RAS; 2023 Mar 5-8; Philadelphia, PA. Philadelphia (PA): AACR; Mol Cancer Res 2023;21(5_Suppl):Abstract nr B034.
    Type of Medium: Online Resource
    ISSN: 1557-3125
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2097884-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 79, No. 24_Supplement ( 2019-12-15), p. PR10-PR10
    Abstract: Pancreatic ductal adenocarcinoma (PDAC) is characterized by KRAS- and autophagy-dependent tumorigenic growth. We determined the role of mutationally activated KRAS, found in ~95% of PDAC, in supporting autophagy. Surprisingly, acute KRAS suppression, which blocks proliferation, was associated with increased rather than decreased autophagic flux. Pharmacologic inhibition of ERK MAPK phenocopied the genetic silencing of KRAS and also increased autophagic flux. We speculated that the loss of ERK-driven metabolic processes may induce compensatory mechanisms to increase autophagy. Addressing a mechanism for ERK suppression-increased autophagy, we describe three mechanisms: 1) ERK inhibition-mediated increased transcription of autophagy and lysosomal genes, 2) ERK inhibitor-induced AMPK activation and suppression of mTOR signaling, and 3) ERK inhibition-facilitated decreased glycolytic flux. We then addressed whether ERK inhibition increased PDAC dependence on autophagy. Supporting this possibility, we found that cotreatment with the autophagy inhibitor chloroquine (CQ) synergistically enhanced ERK inhibitor-mediated antiproliferative activity. Similarly, genetic or pharmacologic inhibition of specific regulators of autophagy also enhanced ERK inhibitor activity. Encouraged by the synergistic relationship between ERK and autophagy inhibition, we performed a CRISPR/Cas-9 mediated genetic loss of function screen in the presence of CQ to determine additional sensitizers as well as mediators of resistance to autophagy inhibition. Top sensitizers included multiple mediators of the DNA damage response. One such sensitizing gene was CHEK1, which encodes the CHK1 serine/threonine kinase, required for checkpoint-mediated cell cycle arrest and activation of DNA repair in response to DNA damage. Accordingly, we showed that treatment with prexasertib, a clinical candidate CHK1 inhibitor, increased autophagic flux in PDAC cells and synergized with CQ to decrease PDAC cell proliferation and increase apoptosis. We conclude that concurrent suppression of multiple metabolic processes, to block compensatory rebound activities, will be needed for effective PDAC treatment. This abstract is also being presented as Poster B07. Citation Format: Kirsten L. Bryant, Jennifer E. Klomp, Ye S. Lee, Clint A. Stalnecker, Kajal R. Grover, A. Cole Edwards, Sen Peng, Mariaelena Pierobon, Emanuel F. Petricoin III, Nhan Tran, Alec C. Kimmelman, Adrienne D. Cox, Channing J. Der. Enhancing the effect of autophagy inhibition for pancreatic cancer treatment [abstract]. In: Proceedings of the AACR Special Conference on Pancreatic Cancer: Advances in Science and Clinical Care; 2019 Sept 6-9; Boston, MA. Philadelphia (PA): AACR; Cancer Res 2019;79(24 Suppl):Abstract nr PR10.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Discovery, American Association for Cancer Research (AACR), Vol. 10, No. 1 ( 2020-01-01), p. 104-123
    Abstract: Allele-specific signaling by different KRAS alleles remains poorly understood. The KRASG12R mutation displays uneven prevalence among cancers that harbor the highest occurrence of KRAS mutations: It is rare (∼1%) in lung and colorectal cancers, yet relatively common (∼20%) in pancreatic ductal adenocarcinoma (PDAC), suggesting context-specific properties. We evaluated whether KRASG12R is functionally distinct from the more common KRASG12D- or KRASG12V-mutant proteins (KRASG12D/V). We found that KRASG12D/V but not KRASG12R drives macropinocytosis and that MYC is essential for macropinocytosis in KRASG12D/V- but not KRASG12R-mutant PDAC. Surprisingly, we found that KRASG12R is defective for interaction with a key effector, p110α PI3K (PI3Kα), due to structural perturbations in switch II. Instead, upregulated KRAS-independent PI3Kγ activity was able to support macropinocytosis in KRASG12R-mutant PDAC. Finally, we determined that KRASG12R-mutant PDAC displayed a distinct drug sensitivity profile compared with KRASG12D-mutant PDAC but is still responsive to the combined inhibition of ERK and autophagy. Significance: We determined that KRASG12R is impaired in activating a key effector, p110α PI3K. As such, KRASG12R is impaired in driving macropinocytosis. However, overexpression of PI3Kγ in PDAC compensates for this deficiency, providing one basis for the prevalence of this otherwise rare KRAS mutant in pancreatic cancer but not other cancers. See related commentary by Falcomatà et al., p. 23. This article is highlighted in the In This Issue feature, p. 1
    Type of Medium: Online Resource
    ISSN: 2159-8274 , 2159-8290
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2607892-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 1 ( 2023-01-04), p. 141-157
    Abstract: Mutational loss of CDKN2A (encoding p16INK4A) tumor-suppressor function is a key genetic step that complements activation of KRAS in promoting the development and malignant growth of pancreatic ductal adenocarcinoma (PDAC). However, pharmacologic restoration of p16INK4A function with inhibitors of CDK4 and CDK6 (CDK4/6) has shown limited clinical efficacy in PDAC. Here, we found that concurrent treatment with both a CDK4/6 inhibitor (CDK4/6i) and an ERK–MAPK inhibitor (ERKi) synergistically suppresses the growth of PDAC cell lines and organoids by cooperatively blocking CDK4/6i-induced compensatory upregulation of ERK, PI3K, antiapoptotic signaling, and MYC expression. On the basis of these findings, a Phase I clinical trial was initiated to evaluate the ERKi ulixertinib in combination with the CDK4/6i palbociclib in patients with advanced PDAC (NCT03454035). As inhibition of other proteins might also counter CDK4/6i-mediated signaling changes to increase cellular CDK4/6i sensitivity, a CRISPR-Cas9 loss-of-function screen was conducted that revealed a spectrum of functionally diverse genes whose loss enhanced CDK4/6i growth inhibitory activity. These genes were enriched around diverse signaling nodes, including cell-cycle regulatory proteins centered on CDK2 activation, PI3K–AKT–mTOR signaling, SRC family kinases, HDAC proteins, autophagy-activating pathways, chromosome regulation and maintenance, and DNA damage and repair pathways. Novel therapeutic combinations were validated using siRNA and small-molecule inhibitor–based approaches. In addition, genes whose loss imparts a survival advantage were identified (e.g., RB1, PTEN, FBXW7), suggesting possible resistance mechanisms to CDK4/6 inhibition. In summary, this study has identified novel combinations with CDK4/6i that may have clinical benefit to patients with PDAC. Significance: CRISPR-Cas9 screening and protein activity mapping reveal combinations that increase potency of CDK4/6 inhibitors and overcome drug-induced compensations in pancreatic cancer.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Discovery, American Association for Cancer Research (AACR), Vol. 6, No. 9 ( 2016-09-01), p. 1052-1067
    Abstract: Breast, ovarian, and prostate cancers are hormone-related and may have a shared genetic basis, but this has not been investigated systematically by genome-wide association (GWA) studies. Meta-analyses combining the largest GWA meta-analysis data sets for these cancers totaling 112,349 cases and 116,421 controls of European ancestry, all together and in pairs, identified at P & lt; 10−8 seven new cross-cancer loci: three associated with susceptibility to all three cancers (rs17041869/2q13/BCL2L11; rs7937840/11q12/INCENP; rs1469713/19p13/GATAD2A), two breast and ovarian cancer risk loci (rs200182588/9q31/SMC2; rs8037137/15q26/RCCD1), and two breast and prostate cancer risk loci (rs5013329/1p34/NSUN4; rs9375701/6q23/L3MBTL3). Index variants in five additional regions previously associated with only one cancer also showed clear association with a second cancer type. Cell-type–specific expression quantitative trait locus and enhancer–gene interaction annotations suggested target genes with potential cross-cancer roles at the new loci. Pathway analysis revealed significant enrichment of death receptor signaling genes near loci with P & lt; 10−5 in the three-cancer meta-analysis. Significance: We demonstrate that combining large-scale GWA meta-analysis findings across cancer types can identify completely new risk loci common to breast, ovarian, and prostate cancers. We show that the identification of such cross-cancer risk loci has the potential to shed new light on the shared biology underlying these hormone-related cancers. Cancer Discov; 6(9); 1052–67. ©2016 AACR. This article is highlighted in the In This Issue feature, p. 932
    Type of Medium: Online Resource
    ISSN: 2159-8274 , 2159-8290
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2607892-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 11 ( 2017-06-01), p. 2789-2799
    Abstract: Breast cancer risks conferred by many germline missense variants in the BRCA1 and BRCA2 genes, often referred to as variants of uncertain significance (VUS), have not been established. In this study, associations between 19 BRCA1 and 33 BRCA2 missense substitution variants and breast cancer risk were investigated through a breast cancer case–control study using genotyping data from 38 studies of predominantly European ancestry (41,890 cases and 41,607 controls) and nine studies of Asian ancestry (6,269 cases and 6,624 controls). The BRCA2 c.9104A & gt;C, p.Tyr3035Ser (OR = 2.52; P = 0.04), and BRCA1 c.5096G & gt;A, p.Arg1699Gln (OR = 4.29; P = 0.009) variant were associated with moderately increased risks of breast cancer among Europeans, whereas BRCA2 c.7522G & gt;A, p.Gly2508Ser (OR = 2.68; P = 0.004), and c.8187G & gt;T, p.Lys2729Asn (OR = 1.4; P = 0.004) were associated with moderate and low risks of breast cancer among Asians. Functional characterization of the BRCA2 variants using four quantitative assays showed reduced BRCA2 activity for p.Tyr3035Ser compared with wild-type. Overall, our results show how BRCA2 missense variants that influence protein function can confer clinically relevant, moderately increased risks of breast cancer, with potential implications for risk management guidelines in women with these specific variants. Cancer Res; 77(11); 2789–99. ©2017 AACR.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Cancer Epidemiology, Biomarkers & Prevention, American Association for Cancer Research (AACR), Vol. 28, No. 5 ( 2019-05-01), p. 935-942
    Abstract: Platelets are a critical element in coagulation and inflammation, and activated platelets are linked to cancer risk through diverse mechanisms. However, a causal relationship between platelets and risk of lung cancer remains unclear. Methods: We performed single and combined multiple instrumental variable Mendelian randomization analysis by an inverse-weighted method, in addition to a series of sensitivity analyses. Summary data for associations between SNPs and platelet count are from a recent publication that included 48,666 Caucasian Europeans, and the International Lung Cancer Consortium and Transdisciplinary Research in Cancer of the Lung data consisting of 29,266 cases and 56,450 controls to analyze associations between candidate SNPs and lung cancer risk. Results: Multiple instrumental variable analysis incorporating six SNPs showed a 62% increased risk of overall non–small cell lung cancer [NSCLC; OR, 1.62; 95% confidence interval (CI), 1.15–2.27; P = 0.005] and a 200% increased risk for small-cell lung cancer (OR, 3.00; 95% CI, 1.27–7.06; P = 0.01). Results showed only a trending association with NSCLC histologic subtypes, which may be due to insufficient sample size and/or weak effect size. A series of sensitivity analysis retained these findings. Conclusions: Our findings suggest a causal relationship between elevated platelet count and increased risk of lung cancer and provide evidence of possible antiplatelet interventions for lung cancer prevention. Impact: These findings provide a better understanding of lung cancer etiology and potential evidence for antiplatelet interventions for lung cancer prevention.
    Type of Medium: Online Resource
    ISSN: 1055-9965 , 1538-7755
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2036781-8
    detail.hit.zdb_id: 1153420-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 13, No. 9 ( 2007-05-01), p. 2728-2737
    Abstract: Purpose: To evaluate the preclinical pharmacokinetics and antitumor efficacy of a novel orally bioavailable poly(ADP-ribose) polymerase (PARP) inhibitor, ABT-888. Experimental Design: In vitro potency was determined in a PARP-1 and PARP-2 enzyme assay. In vivo efficacy was evaluated in syngeneic and xenograft models in combination with temozolomide, platinums, cyclophosphamide, and ionizing radiation. Results: ABT-888 is a potent inhibitor of both PARP-1 and PARP-2 with Kis of 5.2 and 2.9 nmol/L, respectively. The compound has good oral bioavailability and crosses the blood-brain barrier. ABT-888 strongly potentiated temozolomide in the B16F10 s.c. murine melanoma model. PARP inhibition dramatically increased the efficacy of temozolomide at ABT-888 doses as low as 3.1 mg/kg/d and a maximal efficacy achieved at 25 mg/kg/d. In the 9L orthotopic rat glioma model, temozolomide alone exhibited minimal efficacy, whereas ABT-888, when combined with temozolomide, significantly slowed tumor progression. In the MX-1 breast xenograft model (BRCA1 deletion and BRCA2 mutation), ABT-888 potentiated cisplatin, carboplatin, and cyclophosphamide, causing regression of established tumors, whereas with comparable doses of cytotoxic agents alone, only modest tumor inhibition was exhibited. Finally, ABT-888 potentiated radiation (2 Gy/d × 10) in an HCT-116 colon carcinoma model. In each model, ABT-888 did not display single-agent activity. Conclusions: ABT-888 is a potent inhibitor of PARP, has good oral bioavailability, can cross the blood-brain barrier, and potentiates temozolomide, platinums, cyclophosphamide, and radiation in syngeneic and xenograft tumor models. This broad spectrum of chemopotentiation and radiopotentiation makes this compound an attractive candidate for clinical evaluation.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2007
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 78, No. 14 ( 2018-07-15), p. 4086-4096
    Abstract: A growing number of loci within the human leukocyte antigen (HLA) region have been implicated in non-Hodgkin lymphoma (NHL) etiology. Here, we test a complementary hypothesis of “heterozygote advantage” regarding the role of HLA and NHL, whereby HLA diversity is beneficial and homozygous HLA loci are associated with increased disease risk. HLA alleles at class I and II loci were imputed from genome-wide association studies (GWAS) using SNP2HLA for 3,617 diffuse large B-cell lymphomas (DLBCL), 2,686 follicular lymphomas (FL), 2,878 chronic lymphocytic leukemia/small lymphocytic lymphomas (CLL/SLL), 741 marginal zone lymphomas (MZL), and 8,753 controls of European descent. Both DLBCL and MZL risk were elevated with homozygosity at class I HLA-B and -C loci (OR DLBCL = 1.31, 95% CI = 1.06–1.60; OR MZL = 1.45, 95% CI = 1.12–1.89) and class II HLA-DRB1 locus (OR DLBCL = 2.10, 95% CI = 1.24–3.55; OR MZL = 2.10, 95% CI = 0.99–4.45). Increased FL risk was observed with the overall increase in number of homozygous HLA class II loci (P trend & lt; 0.0001, FDR = 0.0005). These results support a role for HLA zygosity in NHL etiology and suggests that distinct immune pathways may underly the etiology of the different NHL subtypes. Significance: HLA gene diversity reduces risk for non-Hodgkin lymphoma. Cancer Res; 78(14); 4086–96. ©2018 AACR.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Cancer Immunology Research, American Association for Cancer Research (AACR), Vol. 11, No. 9 ( 2023-09-01), p. 1222-1236
    Abstract: The receptor tyrosine kinase AXL is a member of the TYRO3, AXL, and proto-oncogene tyrosine-protein kinase MER family and plays pleiotropic roles in cancer progression. AXL is expressed in immunosuppressive cells, which contributes to decreased efficacy of immunotherapy. Therefore, we hypothesized that AXL inhibition could serve as a strategy to overcome resistance to chimeric antigen receptor T (CAR T)–cell therapy. To test this, we determined the impact of AXL inhibition on CD19-targeted CAR T (CART19)–cell functions. Our results demonstrate that T cells and CAR T cells express high levels of AXL. Specifically, higher levels of AXL on activated Th2 CAR T cells and M2-polarized macrophages were observed. AXL inhibition with small molecules or via genetic disruption in T cells demonstrated selective inhibition of Th2 CAR T cells, reduction of Th2 cytokines, reversal of CAR T-cell inhibition, and promotion of CAR T-cell effector functions. AXL inhibition is a novel strategy to enhance CAR T-cell functions through two independent, but complementary, mechanisms: targeting Th2 cells and reversing myeloid-induced CAR T-cell inhibition through selective targeting of M2-polarized macrophages.
    Type of Medium: Online Resource
    ISSN: 2326-6066 , 2326-6074
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2732517-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...