GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (2)
  • 1
    In: Cancer Discovery, American Association for Cancer Research (AACR), Vol. 11, No. 2 ( 2021-02-01), p. 500-519
    Abstract: Due to the disseminated nature of leukemia, malignant cells are exposed to many different tissue microenvironments, including a variety of extramedullary sites. In the present study, we demonstrate that leukemic cells residing in the liver display unique biological properties and also contribute to systemic changes that influence physiologic responses to chemotherapy. Specifically, the liver microenvironment induces metabolic adaptations via upregulating expression of endothelial lipase in leukemia cells, which not only stimulates tumor cell proliferation through polyunsaturated fatty acid–mediated pathways, but also promotes survival by stabilizing antiapoptotic proteins. Additionally, hepatic infiltration and tissue damage caused by malignant cells induces release of liver-derived enzymes capable of degrading chemotherapy drugs, an event that further protects leukemia cells from conventional therapies. Together, these studies demonstrate a unique role for liver in modulating the pathogenesis of leukemic disease and suggest that the hepatic microenvironment may protect leukemia cells from chemotherapeutic challenge. Significance: The studies presented herein demonstrate that the liver provides a microenvironment in which leukemia cells acquire unique metabolic properties. The adaptations that occur in the liver confer increased resistance to chemotherapy. Therefore, we propose that therapies designed to overcome liver-specific metabolic changes will yield improved outcomes for patients with leukemia. This article is highlighted in the In This Issue feature, p. 211
    Type of Medium: Online Resource
    ISSN: 2159-8274 , 2159-8290
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2607892-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2011
    In:  Molecular Cancer Therapeutics Vol. 10, No. 2 ( 2011-02-01), p. 279-291
    In: Molecular Cancer Therapeutics, American Association for Cancer Research (AACR), Vol. 10, No. 2 ( 2011-02-01), p. 279-291
    Abstract: The identification of mammalian target of rapamycin (mTOR) as a major mediator of neurofibromatosis-1 (NF1) tumor growth has led to the initiation of clinical trials using rapamycin analogs. Previous studies from our laboratory have shown that durable responses to rapamycin treatment in a genetically engineered mouse model of Nf1 optic glioma require 20 mg/kg/day, whereas only transient tumor growth suppression was observed with 5 mg/kg/day rapamycin despite complete silencing of ribosomal S6 activity. To gain clinically relevant insights into the mechanism underlying this dose-dependent effect, we used Nf1-deficient glial cells in vitro and in vivo. First, there was an exponential relationship between blood and brain rapamycin levels. Second, we show that currently used biomarkers of mTOR pathway inhibition (phospho-S6, phospho-4EBP1, phospho-STAT3, and Jagged-1 levels) and tumor proliferation (Ki67) do not accurately reflect mTOR target inhibition or Nf1-deficient glial growth suppression. Third, the incomplete suppression of Nf1-deficient glial cell proliferation in vivo following 5 mg/kg/day rapamycin treatment reflects mTOR-mediated AKT activation, such that combined 5 mg/kg/day rapamycin and PI3-kinase (PI3K) inhibition or dual PI3K/mTOR inhibition recapitulates the growth suppressive effects of 20 mg/kg/day rapamycin. These new findings argue for the identification of more accurate biomarkers for rapamycin treatment response and provide reference preclinical data for comparing human rapamycin levels with target effects in the brain. Mol Cancer Ther; 10(2); 279–91. ©2011 AACR.
    Type of Medium: Online Resource
    ISSN: 1535-7163 , 1538-8514
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2011
    detail.hit.zdb_id: 2062135-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...