GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (6)
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 79, No. 24_Supplement ( 2019-12-15), p. A22-A22
    Abstract: Objective: Pancreatic ductal adenocarcinoma (PDAC) remains a treatment-refractory disease as existing molecular subtypes are insufficient and do not currently inform clinical decisions. Rare cell types, including those responsible for resistance, are difficult to detect with bulk transcriptomic profiling. Indeed, several previously identified transcriptomic subtypes of PDAC are unintentionally driven by “contaminating” stromal components. Single-cell transcriptomics provides an unprecedented degree of resolution into the properties of individual cells. However, RNA extraction from RNase- and stroma-rich pancreatic tissue is difficult and prior single-cell efforts have been limited by suboptimal dissociation/RNA quality. We developed a robust single-nucleus RNA-seq (sNuc-seq) technique compatible with frozen archival PDAC specimens and computational techniques to identify the transcriptomic programs driving tumor subtypes and therapeutic resistance. Methods: Patients with localized PDAC undergoing surgical resection with or without neoadjuvant chemoradiotherapy were consented for this IRB-approved study. Specimens were screened for RNA Integrity Number & gt;6. Single nuclei suspensions were extracted from flash-frozen primary PDAC specimens and organoids. Approximately 8,000 nuclei were loaded on the 10x Genomics Chromium platform per sample to generate and sequence 3’ gene expression libraries (Illumina HiSeq 2500, 125 bp paired-end reads). sNuc-seq derived reads were processed using the 10X CellRanger v3.0.2 pipeline. Unsupervised clustering was utilized to identify different cell populations and known marker genes from literature were used to label cell types. Results: Both treatment-naïve (n=12) and treatment-resistant (n=11) specimens yielded high-quality sNuc-seq data ( & gt;1,000 nuclei per sample, & gt;1,000 median genes per nucleus). In each tumor, distinct clusters with gene expression profiles consistent with ductal, fibroblast, endothelial, endocrine, lymphocyte, and myeloid cell populations were identified. Malignant cells were confirmed by inferred copy number variation analysis (InferCNV v3.9) and segregated into several distinct clusters for each individual patient highlighting intratumoral heterogeneity. While some malignant clusters corresponded to previously identified basal-squamous and classical-progenitor bulk subtypes, others featured expression profiles distinct from known subtypes, including cells with upregulation of hypoxia-associated or cytoskeletal genes. Conclusions: Applying sNuc-seq to treatment-naïve and pretreated PDAC specimens, we uncovered significant intratumoral heterogeneity in the malignant and stromal compartments and identified malignant cells featuring transcriptomic programs that do not fit previously identified bulk subtypes. Characterization of therapeutic resistance programs, spatial relationships among cell types, and association with clinical outcomes is ongoing. Citation Format: William L. Hwang, Karthik A. Jagadeesh, Orr Ashenberg, Eugene Drokhlyansky, George Eng, Nicholas Van Wittenberghe, William Freed-Pastor, Clifton Rodriguez, Danielle Dionne, Julia Waldman, Michael Cuoco, Alexander Tsankov, Connor Lambden, Caroline Porter, Jason Schenkel, Laurens Lambert, Debora Ciprani, Andrew J. Aguirre, Mari Mino-Kenudson, Theodore S. Hong, Orit Rozenblatt-Rosen, Carlos Fernandez-del Castillo, Andrew S. Liss, Aviv Regev, Tyler E. Jacks. Molecular subtypes and resistance programs in pancreatic ductal adenocarcinoma elucidated with single-nucleus RNA-seq [abstract] . In: Proceedings of the AACR Special Conference on Pancreatic Cancer: Advances in Science and Clinical Care; 2019 Sept 6-9; Boston, MA. Philadelphia (PA): AACR; Cancer Res 2019;79(24 Suppl):Abstract nr A22.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 22_Supplement ( 2022-11-15), p. C052-C052
    Abstract: Intratumoral nerves play important and versatile roles in cancer initiation, progression, recurrence, treatment-resistance, metastasis, morbidity, and mortality for many malignancies but the diverse molecular mechanisms underlying tumor-nerve crosstalk remain largely unknown. One of the differentiating hallmarks of pancreatic ductal adenocarcinoma (PDAC) is an exceptionally high frequency of perineural invasion (PNI), a histopathologic manifestation of tumor-nerve crosstalk whereby cancer cells recruit, migrate towards, and envelop or invade peripheral nerves. Evidence for some neurochemicals/neurotrophins involved in PNI have been uncovered, but most of the underlying work was limited by a lack of cell-type specificity, spatial context, and fragmented focus on individual pathways. To address these shortcomings, we set out to comprehensively identify cell-type specific genes spatially linked to PNI in patient tumors and then dissect the functional roles of these genes through live imaging of dorsal root ganglia (DRG) sensory neurons incubated in conditioned media from cancer cell organoids overexpressing candidate genes via CRISPR activation (CRISPRa). First, we performed whole transcriptome digital spatial profiling (NanoString GeoMx) on twelve custom tissue microarrays (n=288 cores) derived from intratumorally-matched malignant regions with and without PNI in primary resected PDAC specimens (n=31 patients). Differential gene expression (DE) analysis (FDR & lt; 0.001) for PNI demonstrated that for malignant cells there were 271 enriched and 65 depleted genes, and for fibroblasts there were 16 enriched and 27 depleted genes. We further evaluated associations between PNI and expression of malignant subtypes previously identified from single-nucleus RNA-seq applied to 43 primary resected PDAC specimens. We found that malignant cells engaged in PNI were enriched in the mesenchymal, basaloid and neural-like progenitor (NRP) subtypes and depleted in the classical subtype. To test these associations functionally, we generated isogenic murine organoid lines (KrasG12D/+;Trp53FL/FL;R26-dCas9-VPR) overexpressing subtype-driving transcription factors and collected conditioned media. DRG sensory neurons demonstrate enhanced and suppressed growth kinetics when grown in NRP and classical conditioned media, respectively; mesenchymal and basal-like conditioned media do not appear to influence growth kinetics. These results suggest that while mesenchymal, basaloid, and NRP cells likely all play a role in cancer cell invasion of nerves, NRP cells may have an additional role in tumor-nerve tropism. Additional experiments exploring the functional effects of the top enriched and depleted genes from the DE analysis are ongoing. We anticipate that this study will provide a high-resolution understanding of critical intercellular interactions in the PDAC tumor microenvironment that facilitate PNI and tumor-nerve crosstalk more broadly to guide novel therapeutic strategies. Citation Format: William L. Hwang, Jennifer Su, Jimmy A. Guo, Carina Shiau, Jaimie L. Barth, Hannah I. Hoffman, Prajan Divakar, Jason W. Reeves, Eric Miller, Grissel Cervantes-Jaramillo, William Freed-Pastor, Vanessa Funes, Jennifer Y. Wo, Theodore S. Hong, Carlos Fernandez-del Castillo, Lei Zheng, Andrew J. Aguirre, David T. Ting, Mari Mino-Kenudson, Tyler Jacks. Identifying mediators of perineural invasion in pancreatic cancer using spatial transcriptomics [abstract]. In: Proceedings of the AACR Special Conference on Pancreatic Cancer; 2022 Sep 13-16; Boston, MA. Philadelphia (PA): AACR; Cancer Res 2022;82(22 Suppl):Abstract nr C052.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 22_Supplement ( 2020-11-15), p. PR-007-PR-007
    Abstract: Molecular subtyping of pancreatic ductal adenocarcinoma (PDAC) remains in its nascent stages and does not currently inform clinical management or therapeutic development. Previously identified bulk expression subtypes in the untreated setting were influenced by contaminating stroma whereas single cell RNA-seq (scRNA-seq) of fresh tumors under-represented key cell types. Two consensus subtypes have arisen from these prior efforts: (1) classical-pancreatic, encompassing a spectrum of pancreatic lineage precursors, and (2) basal-like/squamous/quasi-mesenchymal, characterized by loss of endodermal identity and aberrations in chromatin modifiers. Basal-like tumors were associated with poorer responses to chemotherapy and worse survival in the metastatic setting but attempts to refine this binary classification have failed to further stratify patient survival. Recent clinical trials have supported the increasing adoption of neoadjuvant therapy to aggressively address the risk of micro-metastatic spread and to circumvent concerns of treatment tolerance in the postoperative setting. There is an urgent need to understand how preoperative treatment reprograms residual tumor cells to identify additional therapeutic vulnerabilities that can be exploited in combination with neoadjuvant CRT. Here, we developed a robust single-nucleus RNA-seq (snRNA-seq) technique for frozen archival PDAC specimens and used it to study both untreated tumors (n = 15) and those that received neoadjuvant CRT (n = 11). Gene expression programs learned across malignant cell and fibroblast profiles uncovered a clinically relevant molecular taxonomy with improved prognostic stratification (median survival: 11.2 months in highest risk group to 44.7 months in lowest risk group) compared to prior classifications. Moreover, in the neoadjuvant treatment context, there was lower expression of classical-like phenotypes in malignant cells in favor of basal-like phenotypes associated with TNF-NFkB and interferon signaling as well as the presence of novel acinar and neuroendocrine classical-like states, which may be more resilient to cytotoxic treatment. These results suggest that differentiated endodermal phenotypes are only prevalent enough to be detected under treatment selection pressure and when observed in treatment-naïve bulk studies, may reflect normal cell contamination. Spatially-resolved transcriptomics revealed an association between malignant cells expressing basal-like programs and higher immune infiltration with increased lymphocytic content, whereas those exhibiting classical-like programs were linked to sparser macrophage-predominant microniches, perhaps pointing to distinct therapeutic susceptibilities. Our refined molecular taxonomy and spatial resolution may help advance precision oncology in PDAC through informative stratification in clinical trials and insights into differential therapeutic targeting leveraging the immune system. Citation Format: William L. Hwang, Karthik A. Jagadeesh, Jimmy A. Guo, Hannah I. Hoffman, Eugene Drokhlyansky, Nicholas Van Wittenberghe, Samouil Farhi, Denis Schapiro, Jason Reeves, Daniel R. Zollinger, George Eng, Jason M. Schenkel, William A. Freed-Pastor, Clifton Rodrigues, Domenic Abbondanza, Debora Ciprani, Jennifer Y. Wo, Theodore S. Hong, Andrew J. Aguirre, Orit Rozenblatt-Rosen, Mari Mino-Kenudson, Carlos Fernandez-del Castillo, Andrew S. Liss, Tyler E. Jacks, Aviv Regev. Single-nucleus and spatial transcriptomics of archival pancreatic ductal adenocarcinoma reveals multi-compartment reprogramming after neoadjuvant treatment [abstract]. In: Proceedings of the AACR Virtual Special Conference on Pancreatic Cancer; 2020 Sep 29-30. Philadelphia (PA): AACR; Cancer Res 2020;80(22 Suppl):Abstract nr PR-007.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 81, No. 13_Supplement ( 2021-07-01), p. 94-94
    Abstract: A molecular classification of pancreatic ductal adenocarcinoma (PDAC) that informs clinical management remains elusive. Previously identified bulk expression subtypes in the untreated setting were influenced by contaminating stroma whereas single cell RNA-seq (scRNA-seq) of fresh tumors under-represented key cell types. Two consensus subtypes have arisen from these prior efforts: (1) classical-like, and (2) basal-like. Basal-like tumors were associated with worse survival in the metastatic setting but attempts to refine this binary classification have failed to further stratify patient survival. Here, we developed a robust single-nucleus RNA-seq (snRNA-seq) technique for banked frozen PDAC specimens and studied a cohort of untreated resected primary tumors (n ~ 20). Gene expression programs learned across malignant cell and cancer-associated fibroblast (CAF) profiles uncovered a clinically-relevant molecular taxonomy with improved prognostic stratification compared to prior classifications. Digital spatial profiling revealed an association between malignant cells expressing basal-like programs and greater immune infiltration with relatively fewer macrophages, whereas those exhibiting classical-like programs were linked to inflammatory CAFs and macrophage-predominant microniches. Recent clinical trials have supported the increasing adoption of neoadjuvant therapy to aggressively address the risk of micro-metastatic spread and to circumvent concerns of treatment tolerance in the postoperative setting. There is an urgent need to understand how preoperative treatment impacts residual tumor cells and their interactions with other cell types in the tumor microenvironment to identify additional therapeutic vulnerabilities that can be exploited. Towards this end, we performed snRNA-seq on an unmatched cohort of neoadjuvant-treated resected primary tumors (n ~ 25) with most cases involving FOLFIRINOX chemotherapy followed by chemoradiation. Remarkably, the quality of single-nucleus mRNA profiles was comparable between heavily pre-treated and untreated specimens. We identified differentially expressed genes between treated and untreated samples to infer cell-type specific reprogramming in the residual tumor. This analysis revealed that in the neoadjuvant treatment context, there was lower expression of classical-like phenotypes in malignant cells in favor of basal-like phenotypes associated with TNF-NFkB and interferon signaling as well as the presence of novel acinar and neuroendocrine classical-like states. Our refined molecular taxonomy and spatial resolution may help advance precision oncology in PDAC through informative stratification in clinical trials and insights into compartment-specific therapies. Citation Format: William L. Hwang, Karthik A. Jagadeesh, Jimmy A. Guo, Hannah I. Hoffman, Payman Yadollahpour, Jason Reeves, Eugene Drokhlyansky, Nicholas Van Wittenberghe, Samouil Farhi, Denis Schapiro, George Eng, Jason M. Schenkel, William A. Freed-Pastor, Orr Ashenberg, Clifton Rodrigues, Domenic Abbondanza, Toni Delorey, Devan Phillips, Jorge Roldan, Debora Ciprani, Marina Kern, Jaimie L. Barth, Daniel R. Zollinger, Kit Fuhrman, Robin Fropf, Joseph Beechem, Colin Weekes, Cristina R. Ferrone, Jennifer Y. Wo, Theodore S. Hong, Orit Rozenblatt-Rosen, Andrew J. Aguirre, Mari Mino-Kenudson, Carlos Fernandez-del- Castillo, Andrew S. Liss, David T. Ting, Tyler Jacks, Aviv Regev. Multi-compartment reprogramming and spatially-resolved interactions in frozen pancreatic cancer with and without neoadjuvant chemotherapy and radiotherapy at single-cell resolution [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 94.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 27, No. 10 ( 2021-05-15), p. 2807-2815
    Abstract: Perineural invasion (PNI) is associated with aggressive tumor behavior, recurrence, and metastasis, and can influence the administration of adjuvant treatment. However, standard histopathologic examination has limited sensitivity in detecting PNI and does not provide insights into its mechanistic underpinnings. Experimental Design: A multivariate Cox regression was performed to validate associations between PNI and survival in 2,029 patients across 12 cancer types. Differential expression and gene set enrichment analysis were used to learn PNI-associated programs. Machine learning models were applied to build a PNI gene expression classifier. A blinded re-review of hematoxylin and eosin (H & E) slides by a board-certified pathologist helped determine whether the classifier could improve occult histopathologic detection of PNI. Results: PNI associated with both poor overall survival [HR, 1.73; 95% confidence interval (CI), 1.27–2.36; P & lt; 0.001] and disease-free survival (HR, 1.79; 95% CI, 1.38–2.32; P & lt; 0.001). Neural-like, prosurvival, and invasive programs were enriched in PNI-positive tumors (Padj & lt; 0.001). Although PNI-associated features likely reflect in part the increased presence of nerves, many differentially expressed genes mapped specifically to malignant cells from single-cell atlases. A PNI gene expression classifier was derived using random forest and evaluated as a tool for occult histopathologic detection. On a blinded H & E re-review of sections initially described as PNI negative, more specimens were reannotated as PNI positive in the high classifier score cohort compared with the low-scoring cohort (P = 0.03, Fisher exact test). Conclusions: This study provides salient biological insights regarding PNI and demonstrates a role for gene expression classifiers to augment detection of histopathologic features.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 12_Supplement ( 2022-06-15), p. SY12-04-SY12-04
    Abstract: Pancreatic ductal adenocarcinoma (PDAC) is projected to be the second leading cause of cancer mortality in the United States by 2030. Given that resistance to cytotoxic therapy is pervasive, there is a critical need to elucidate salient gene expression programs and spatial relationships among malignant and stromal cells in the tumor microenvironment (TME), particularly in residual disease. We developed and applied a single-nucleus RNA-seq (snRNA-seq) technique to 43 banked frozen primary PDAC specimens that either received neoadjuvant therapy (n=25) or were treatment-naïve (n=18). We discovered expression programs across malignant cell and fibroblast profiles that formed the basis for a refined molecular taxonomy, including a novel neural-like progenitor (NRP) malignant program enriched with neoadjuvant treatment in tumors and organoids, and associated with the worst prognosis in bulk profiles from independent cohorts. To elucidate how neoadjuvant treatment and cancer cell- and fibroblast-intrinsic programs modulate the composition of multicellular neighborhoods, we performed spatial profiling with the GeoMx[1] platform (NanoString) on 21 formalin-fixed paraffin-embedded sections using the human whole transcriptome atlas (WTA). Each tumor showed intra-tumoral heterogeneity in tissue architecture and regions of interest (ROIs) with diverse patterns of neoplastic cells, cancer-associated fibroblasts (CAFs), and immune cells were selected for profiling. We deconvolved the WTA data with our snRNA-seq cell type signatures and mapped expression programs onto the tumor architecture to reveal three distinct multicellular neighborhoods, which we annotated as classical, squamoid-basaloid, and treatment-enriched. The observed enrichment in post-treatment residual disease of multiple spatially-defined receptor-ligand interactions and a neighborhood featuring the NRP program, neurotropic CAF program, and CD8+ T cells may open new therapeutic opportunities. Next, we mapped malignant/CAF programs and immune cell subsets at single-cell spatial resolution by performing spatial molecular imaging (SMI[2]; NanoString CosMx) using a panel of 960 RNA targets on a subset of seven tumors (2 untreated, 5 treated) and captured over 200,000 cells with an average of more than 450 transcripts detected per cell. Correlating ROIs from whole-transcriptome DSP to matched fields of view in kiloplex SMI enabled further dissection of PDAC architecture and treatment-associated remodeling of cell type distributions and receptor-ligand interactions. Ongoing functional studies have begun to elucidate the key regulatory elements underlying the distinct treatment-associated NRP malignant program and its interactions with the TME. Overall, the complementary combination of snRNA-seq, whole-transcriptome DSP, and kiloplex SMI provides a high-resolution molecular framework that can be harnessed to augment precision oncology efforts in pancreatic cancer. [1] GeoMx DSP is for Research Use Only and not for use in diagnostic procedures. [2] CosMx SMI is for Research Use Only and not for use in diagnostic procedures. Citation Format: William L. Hwang, Karthik A. Jagadeesh, Jimmy A. Guo, Hannah I. Hoffman, Carina Shiau, Jennifer Su, Payman Yadollahpour, Jason W. Reeves, Youngmi Kim, Sean Kim, Mark Gregory, Prajan Divakar, Eric Miller, Michael Rhodes, Sarah Warren, Erroll Rueckert, Kit Fuhrman, Daniel R. Zollinger, Robin Fropf, Joseph M. Beechem, Arnav Mehta, Toni Delorey, Cristin McCabe, Jaimie L. Barth, Piotr Zelga, Cristina R. Ferrone, Motaz Qadan, Keith D. Lillemoe, Rakesh K. Jain, Jennifer Y. Wo, Theodore S. Hong, Ramnik Xavier, Orit Rozenblatt-Rosen, Andrew J. Aguirre, Carlos Fernandez-Del Castillo, Andrew S. Liss, Mari Mino-Kenudson, David T. Ting, Tyler Jacks, Aviv Regev. Multicellular spatial community featuring a novel neuronal-like malignant phenotype is enriched in pancreatic cancer after neoadjuvant chemotherapy and radiotherapy [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr SY12-04.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...