GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (4)
  • 1
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 13, No. 4 ( 2007-02-15), p. 1260-1268
    Abstract: Purpose: The purpose of the present study was to evaluate the anti–epidermal growth factor monoclonal antibody (mAb) cetuximab (IMC-C225) as a delivery agent for boron neutron capture therapy (BNCT) of a human epidermal growth factor receptor (EGFR) gene-transfected rat glioma, designated as F98EGFR. Experimental Design: A heavily boronated polyamidoamine dendrimer was chemically linked to cetuximab by means of the heterobifunctional reagents N-succinimidyl 3-(2-pyridyldithio)-propionate and N-(k-maleimido undecanoic acid)-hydrazide. The bioconjugate, designated as BD-C225, was specifically taken up by F98EGFR glioma cells in vitro compared with receptor-negative F98 wild-type cells (41.8 versus 9.1 μg/g). For in vivo biodistribution studies, F98EGFR cells were implanted stereotactically into the brains of Fischer rats, and 14 days later, BD-C225 was given intracerebrally by either convection enhanced delivery (CED) or direct intratumoral (i.t.) injection. Results: The amount of boron retained by F98EGFR gliomas 24 h following CED or i.t. injection was 77.2 and 50.8 μg/g, respectively, with normal brain and blood boron values & lt;0.05 μg/g. Boron neutron capture therapy was carried out at the Massachusetts Institute of Technology Research Reactor 24 h after CED of BD-C225, either alone or in combination with i.v. boronophenylalanine (BPA). The corresponding mean survival times (MST) were 54.5 and 70.9 days (P = 0.017), respectively, with one long-term survivor (more than 180 days). In contrast, the MSTs of irradiated and untreated controls, respectively, were 30.3 and 26.3 days. In a second study, the combination of BD-C225 and BPA plus sodium borocaptate, given by either i.v. or intracarotid injection, was evaluated and the MSTs were equivalent to that obtained with BD-C225 plus i.v. BPA. Conclusions: The survival data obtained with BD-C225 are comparable with those recently reported by us using boronated mAb L8A4 as the delivery agent. This mAb recognizes the mutant receptor, EGFRvIII. Taken together, these data convincingly show the therapeutic efficacy of molecular targeting of EGFR using a boronated mAb either alone or in combination with BPA and provide a platform for the future development of combinations of high and low molecular weight delivery agents for BNCT of brain tumors.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2007
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 78, No. 13_Supplement ( 2018-07-01), p. 5832-5832
    Abstract: Therapeutic advances for the treatment of acute myeloid leukemia (AML) have been limited in part due to the heterogeneity and complexity of the disease and a poor understanding of its underlying biology. The leukemia stem cell (LSC) arguably resists current therapy resulting in relapses for most initially treatment sensitive patients. AML with myelodysplastic syndrome related changes (AML-MRC) highlights this challenge, representing a very poor outlook subset. The present study sought to understand the underlying sphingolipid biology in and AML, and to evaluate the efficacy of nanoliposomal ceramide (Lip-C6). Sphingolipids play essential roles in cell survival and proliferation, as well as stress and death. Lip-C6, which delivers a short-chain analog of the pro-apoptotic sphingolipid ceramide, has been in development as an anticancer therapeutic. The efficacy of Lip-C6 therapy was evaluated in both in vitro and in vivo models using primary AML cells and AML cell lines. Evaluation and characterization of the effect of treatment with Lip-C6 was done through lipidomic, short term assays such as apoptosis, autophagy and colony formation assays. Efficacy of Lip-C6 and vinblastine was tested in patient derived xenograft models and mouse - human cell line xenograft MV-411. NOD SCID gamma (NSG) mice were injected with luciferase/YFP labeled cells and monitored by bioluminescence imaging (BLI) for the leukemia progression and efficacy. Sphingolipid metabolism was observed to be elevated in patient samples with De Novo AML but not those with AML-MRC. Apoptosis induced by Lip-C6 in CD34+ve/CD38-ve “LSCs” was robust in AML-MRC, but limited in De Novo AMLs. Similarly, AML colonies forming cells were more sensitive to Lip-C6 in AML- MRC than in De Novo cases. It was hypothesized that elevated sphingolipid metabolism and the upregulation of pro-survival pathways such as autophagy contributed to Lip-C6 resistance in De Novo AML. Vinblastine, when combined with Lip-C6, focused sphingolipid metabolism towards pro-apoptotic metabolites and blocked autophagy. In-vivo combination of Lip-C6 and vinblastine uniquely yielded long term control of leukemia progression without systemic toxicity, translating in to prolonged overall leukemia free survival compared to single agents. Altogether, this study shows fundamental biological differences in sphingolipid metabolism between De Novo AML and AML-MRC. The combination of Vinblastine and Lip-C6 targets the LSC and yields apparent cure of lethal human xenograft AML. Citation Format: Charyguly Annageldiyev, Arati Sharma, Brian M. Barth, Todd E. Fox, Tye Deering, Viola Devine, Nicole R. Keasey, Stephan T. Stern, Megan M. Young, Hong-Gang Wan Wang, Jason Liao, Junjia Zhu, Aaron D. Viny, Ross L. Levine, Thomas P. Loughran, Mark Kester, David F. Claxton. Sphingolipid metabolism determines the efficacy of nanoliposomal ceramide in acute myeloid leukemia [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 5832.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2005
    In:  Clinical Cancer Research Vol. 11, No. 11 ( 2005-06-01), p. 3987-4002
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 11, No. 11 ( 2005-06-01), p. 3987-4002
    Abstract: Background: Boron neutron capture therapy (BNCT) is based on the nuclear reaction that occurs when boron-10 is irradiated with low-energy thermal neutrons to yield high linear energy transfer α particles and recoiling lithium-7 nuclei. Clinical interest in BNCT has focused primarily on the treatment of high-grade gliomas and either cutaneous primaries or cerebral metastases of melanoma, most recently, head and neck and liver cancer. Neutron sources for BNCT currently are limited to nuclear reactors and these are available in the United States, Japan, several European countries, and Argentina. Accelerators also can be used to produce epithermal neutrons and these are being developed in several countries, but none are currently being used for BNCT. Boron Delivery Agents: Two boron drugs have been used clinically, sodium borocaptate (Na2B12H11SH) and a dihydroxyboryl derivative of phenylalanine called boronophenylalanine. The major challenge in the development of boron delivery agents has been the requirement for selective tumor targeting to achieve boron concentrations (∼20 μg/g tumor) sufficient to deliver therapeutic doses of radiation to the tumor with minimal normal tissue toxicity. Over the past 20 years, other classes of boron-containing compounds have been designed and synthesized that include boron-containing amino acids, biochemical precursors of nucleic acids, DNA-binding molecules, and porphyrin derivatives. High molecular weight delivery agents include monoclonal antibodies and their fragments, which can recognize a tumor-associated epitope, such as epidermal growth factor, and liposomes. However, it is unlikely that any single agent will target all or even most of the tumor cells, and most likely, combinations of agents will be required and their delivery will have to be optimized. Clinical Trials: Current or recently completed clinical trials have been carried out in Japan, Europe, and the United States. The vast majority of patients have had high-grade gliomas. Treatment has consisted first of “debulking” surgery to remove as much of the tumor as possible, followed by BNCT at varying times after surgery. Sodium borocaptate and boronophenylalanine administered i.v. have been used as the boron delivery agents. The best survival data from these studies are at least comparable with those obtained by current standard therapy for glioblastoma multiforme, and the safety of the procedure has been established. Conclusions: Critical issues that must be addressed include the need for more selective and effective boron delivery agents, the development of methods to provide semiquantitative estimates of tumor boron content before treatment, improvements in clinical implementation of BNCT, and a need for randomized clinical trials with an unequivocal demonstration of therapeutic efficacy. If these issues are adequately addressed, then BNCT could move forward as a treatment modality.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2005
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2015
    In:  Molecular Cancer Therapeutics Vol. 14, No. 12_Supplement_2 ( 2015-12-01), p. B17-B17
    In: Molecular Cancer Therapeutics, American Association for Cancer Research (AACR), Vol. 14, No. 12_Supplement_2 ( 2015-12-01), p. B17-B17
    Abstract: Acute myelogenous leukemia (AML), the most common type of leukemia in adults, is heterogeneous in nature and aggressive and only about 25% of patients that experience remission with cytotoxic chemotherapy remain disease-free. The present work demonstrates the therapeutic efficacy of a novel antiestrogen-ceramide regimen in AML. Herein we show that the antiestrogen tamoxifen (tam) magnifies the cytotoxic impact of ceramide, a tumor-suppressor sphingolipid, inducing apoptosis through mitochondrial-bioenergetic targeting, an expedient, practicable avenue for disrupting the energy-producing systems of cancer cells and a potentially fruitful therapeutic direction. C6-ceramide (C6-cer), a short-chain, hydrophilic analog of ceramide was used in these studies. Nanoliposomal formulations of C6-cer and tam were also utilized and found equally effective. In human AML cell lines and in patient-derived AML cells, the C6-cer-tam combination was far more active than single agents in depressing viability and in inducing apoptosis (Annexin V binding; DNA fragmentation). Interestingly, the major tam metabolite in humans, and the one with the longest serum half-life, N-desmethyltamoxifen (DMT), was equally effective in combination with C6-cer. As an example, in KG-1 cells, whereas C6-cer (5 μM) and DMT (5 μM) reduced viability to only 95 and 90% of control, respectively, the combination resulted in 10% viability after 72 hr exposure. In-depth investigations revealed that cytotoxic responses to the C6-cer-antiestrogen regimen were accompanied by i) time- and dose-dependent loss of mitochondrial membrane potential, ii) inhibition of mitochondrial Complex I respiration, iii) mitochondrial cytochrome c release, a key initiative step in the apoptotic process, iv) decreases in cellular ATP levels as marked by robust increases the ratio of ADP to ATP, and v) a & gt;50% reduction in cellular glycolytic capacity, a demonstration of commitment to energy severance. As loss of mitochondrial membrane potential constitutes a critical event in cell death and depletion of ATP in conjunction with targeting the “Warburg effect” represent potent metabolic “hits”, we conclude that the C6-cer-tamoxifen regimen could be a potentially effective targeted therapy for AML, independent of the multidrug resistant phenotype, as shown by efficacy in vincristine-resistant AML cells. Although a two-drug combination, this regimen could be classified as a mitocan, an agent that targets mitochondria and exhibits anti-cancer activity. Support: NCI CA171983 Citation Format: Samy A.F. Morad, Terence E. Ryan, Brian M. Barth, David F. Claxton, Mark Kester, Thomas P. Loughran, Jr., Myles C. Cabot. Ceramide-antiestrogen regimen targets bioenergetic elements in acute myelogenous leukemia. [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2015 Nov 5-9; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2015;14(12 Suppl 2):Abstract nr B17.
    Type of Medium: Online Resource
    ISSN: 1535-7163 , 1538-8514
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2015
    detail.hit.zdb_id: 2062135-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...