GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (2)
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 78, No. 13_Supplement ( 2018-07-01), p. 2062-2062
    Abstract: Childhood neuroblastomas with MYCN gene amplification form a particularly high-risk subset of this disease and are difficult to treat effectively. This has focused attention on tumor-specific gene dependencies that reflect important pathways in tumorigenesis, and thus could provide valuable targets for the development of novel therapeutics. Using genome-scale CRISPR-Cas9 approaches that allow unbiased detection of genes critically involved in tumor cell growth and survival, we identified 147 candidate genes associated with selective vulnerabilities in nine MYCN-amplified neuroblastoma cell lines, compared to findings in over 300 other human cancer cell lines representing multiple tumor cell types. We then used genome-wide ChIP-seq analysis to test the hypothesis that a small number of transcription factors - MYCN, HAND2, ISL1, PHOX2B, GATA3, and TBX2, all represented in the selective dependency group - are members of the transcriptional core regulatory circuitry (CRC) that underlies cell state in MYCN-amplified neuroblastoma. We show that these transcription factors bind as dense clusters at defined epicentres within the enhancers of their own genes, as well as those of the other CRC transcription factor genes, creating a positive feed-forward autoregulatory loop that establishes and maintains high levels of gene expression. To disable the CRC, we tested a combination of BRD4 and CDK7 inhibitors, which we postulated would act synergistically by targeting both transcriptional initiation and elongation required to synthesize regulatory transcription factors. MYCN-amplified neuroblastoma cells treated with both drugs were killed synergistically, in vitro and in vivo, and accompanied by rapid downregulation of CRC transcription factor gene expression. This study defines a set of critical dependency genes in MYCN-amplified neuroblastoma, a subset of which comprises the oncogenic transcriptional regulatory circuitry that underlies cell state and survival in this tumor. Citation Format: Adam D. Durbin, Mark W. Zimmerman, Neekesh V. Dharia, Brian J. Abraham, Brian J. Abraham, Amanda Balboni-Iniguez, Nina Weichert-Leahey, Shuning He, John M. Krill-Burger, David E. Root, Francisca Vazquez, Aviad Tsherniak, William C. Hahn, Todd R. Golub, Richard A. Young, A. Thomas Look, Kimberly Stegmaier. Selective gene dependencies in MYCN-amplified neuroblastoma include the core transcriptional regulatory circuitry [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 2062.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 78, No. 13_Supplement ( 2018-07-01), p. 2352-2352
    Abstract: Many children with metastatic or recurrent pediatric solid tumors continue to have poor survival, and there is an immense need to identify novel therapeutic approaches. Moreover, these cancers typically have simple genomes with limited known druggable molecular events. In order to discover new vulnerabilities in pediatric solid tumors, we have performed genome-scale CRISPR-Cas9 loss-of-function screening and deep “omic” characterization in over 60 pediatric cancer cell lines to date, including neuroblastoma, medulloblastoma, Ewing sarcoma, malignant rhabdoid tumor and rhabdomyosarcoma lines, to begin defining a pediatric cancer dependency map. Global analyses of the pediatric dependency landscape have identified emerging classes of pediatric cancers, including epigenetic-driven, aberrant transcription factor-driven and receptor tyrosine kinase-driven malignancies. For example, the preferential dependencies identified in a subset of neuroblastoma, which has aberrantly high expression of the transcription factor MYCN, are highly enriched for an interconnected network of genes annotated to have transcription factor activity. In addition to the global evaluation, we have developed methods and tools for prioritizing targets for further validation within a cancer type. These tools computationally integrate the pediatric dependency data across multiple datasets to identify categories of genetic dependencies that are especially strong hits or enriched hits in a specific pediatric malignancy. As an example, the intersection of MYCN-amplified neuroblastoma specific dependencies and H3-lysine 27 acetylation (H3K27ac) profiling across MYCN-amplified neuroblastoma allowed us to identify a transcriptional core regulatory circuit (CRC) that may drive the malignant state. Furthermore, targeting transcription with the BRD4 inhibitor JQ1 and CDK7 inhibitor THZ1 caused synergistic killing of neuroblastoma cells suggesting a novel therapeutic approach to treating this disease. Thus, defining a comprehensive pediatric cancer dependency map and developing the methods and tools to prioritize vulnerabilities in different cancer types will allow us to discover both novel biology and new therapeutic opportunities in childhood malignancies. Citation Format: Neekesh V. Dharia, Clare Malone, Amanda Balboni Iniguez, Lillian Guenther, Liying Chen, Gabriela Alexe, Adam D. Durbin, Mark W. Zimmerman, Andrew Hong, Pratiti Bandopadhayay, Mariella G. Filbin, Thomas Howard, Brenton Paolella, Iris Fung, Josephine Lee, Phil Montgomery, John M. Krill-Burger, Brian J. Abraham, Jennifer Roth, David E. Root, Richard A. Young, A. Thomas Look, Rameen Beroukhim, Jesse S. Boehm, William C. Hahn, Todd R. Golub, Aviad Tsherniak, Francisca Vazquez, Kimberly Stegmaier. Defining a pediatric cancer dependency map [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 2352.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...