GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (78)
  • Medicine  (78)
Material
Publisher
  • American Association for Cancer Research (AACR)  (78)
Language
Subjects(RVK)
  • Medicine  (78)
RVK
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 64, No. 6 ( 2004-03-15), p. 1972-1974
    Abstract: Nasopharyngeal carcinoma (NPC) poses one of the serious health problems in southern Chinese, with an incidence rate ranging from 15 to 50/100,000. Chromosome translocation t(1;3) and frequent loss of heterogeneity on short arms of chromosome 3 and 9 have been reported to be associated with NPC, and a genome-wide scan identified an NPC susceptibility locus on chromosome 4p15.1-q12 recently. In our study, we collected samples from 18 families at high risk of NPC from the Hunan province in southern China, genotyped with a panel of polymorphic markers on short arms of chromosomes 3, 9, and 4p15.1-q12. A locus on 3p21 was identified to link to NPC with a maximum logarithm of odds for linkage score of 4.18. Fine mapping located the locus to a 13.6-cM region on 3p21.31-21.2, where a tumor suppressor gene cluster resided. Our findings identified a novel locus for NPC and provided a map location for susceptibility genes candidates. In contrast to a recent study, no significant evidence for NPC linkage to chromosomes 4 and 9 was observed.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2004
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 28, No. 16 ( 2022-08-15), p. 3499-3508
    Abstract: This study aimed to investigate the biomarkers of sintilimab (anti–PD-1) plus IBI305 (a bevacizumab biosimilar) in advanced hepatocellular carcinoma (HCC), as well as their safety and efficacy. Patients and Methods: A total of 50 patients with advanced HCC received sintilimab (200 mg) plus IBI305 (7.5 or 15 mg/kg), treated every 3 weeks in a phase Ib clinical study. We performed baseline serum cytokine analysis using bead-based multiplex immunoassay and multiplex immunofluorescence on tissue specimens to discover novel biomarkers of response to VEGF/PD-1 combination therapy in HCC. Results: The overall response rate was 34.0% (17/50). The median progression-free survival (PFS) and the median overall survival were 10.5 and 20.2 months, respectively. The incidence of grade 3 to 5 adverse events was lower in the 7.5 mg/kg (13.8%) than in the 15 mg/kg (28.6%) dose groups. Biomarker analysis showed that the serum CD137 concentration was significantly higher in patients with clinical benefit (CB) than in those without CB (median, 32.8 pg/mL vs. 19.8 pg/mL, P = 0.034). A markedly longer PFS was observed in patients with high CD137 concentrations compared with those with low concentrations (median, 14.2 months vs. 4.1 months, P = 0.001). The higher density of M1 macrophages (CD68+CD163–) in the stroma was also associated with higher efficacy (P = 0.033) and a longer PFS (P = 0.024). Conclusions: Sintilimab plus IBI305 was well tolerated and was effective therapy for advanced HCC. Both serum concentrations of CD137 and tumor infiltration of M1 macrophages may serve as potential predictive biomarkers. See related commentary by Cappuyns and Llovet, p. 3405
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2018
    In:  Clinical Cancer Research Vol. 24, No. 2 ( 2018-01-15), p. 445-459
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 24, No. 2 ( 2018-01-15), p. 445-459
    Abstract: Purpose: Regulated in development and DNA damage response-1 (REDD1) is a stress-related protein and is involved in the progression of cancer. The role and regulatory mechanism of REDD1 in bladder urothelial carcinoma (BUC), however, is yet unidentified. Experimental Design: The expression of REDD1 in BUC was detected by Western blot analysis and immunohistochemistry (IHC). The correlation between REDD1 expression and clinical features in patients with BUC were assessed. The effects of REDD1 on cellular proliferation, apoptosis, autophagy, and paclitaxel sensitivity were determined both in vitro and in vivo. Then the targeted-regulating mechanism of REDD1 by miRNAs was explored. Results: Here the significant increase of REDD1 expression is detected in BUC tissue, and REDD1 is first reported as an independent prognostic factor in patients with BUC. Silencing REDD1 expression in T24 and EJ cells decreased cell proliferation, increased apoptosis, and decreased autophagy, whereas the ectopic expression of REDD1 in RT4 and BIU87 cells had the opposite effect. In addition, the REDD1-mediated proliferation, apoptosis, and autophagy are found to be negatively regulated by miR-22 in vitro, which intensify the paclitaxel sensitivity via inhibition of the well-acknowledged REDD1–EEF2K–autophagy axis. AKT/mTOR signaling initially activated or inhibited in response to silencing or enhancing REDD1 expression and then recovered rapidly. Finally, the inhibited REDD1 expression by either RNAi or miR-22 sensitizes BUC tumor cells to paclitaxel in a subcutaneous transplant carcinoma model in vivo. Conclusions: REDD1 is confirmed as an oncogene in BUC, and antagonizing REDD1 could be a potential therapeutic strategy to sensitize BUC cells to paclitaxel. Clin Cancer Res; 24(2); 445–59. ©2017 AACR.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2017
    In:  Cancer Research Vol. 77, No. 13_Supplement ( 2017-07-01), p. LB-288-LB-288
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 13_Supplement ( 2017-07-01), p. LB-288-LB-288
    Abstract: Polycomb repressive complex 2 (PRC2) consists of three core subunits, EZH2, EED and SUZ12 and plays pivotal roles in transcriptional regulation through its histone H3K27 methyltransferase activity. Dysregulation of PRC2 is observed in multiple human cancers, for example, the catalytic subunit EZH2 is overexpressed in a wide range of human cancers and gain-of-function mutations of EZH2 within its catalytic site have been reported in human B-cell lymphoma, parathyroid carcinoma and melanoma. Small molecule inhibitors that compete with the cofactor S-adenosylmethionine (SAM) have been reported and showed anti-lymphoma efficacy in pre-clinical studies. EED within the PRC2 complex allosterically activate the enzymatic activity by binding to tri-methylated H3K27 (H3K27me3). Here we report the discovery of EED226, a potent and selective PRC2 inhibitor directly binding to the H3K27me3 binding pocket of EED. EED226 induces conformational change upon binding EED leading to loss of PRC2 activity. EED226 shows similar activity as SAM-competitive inhibitors in blocking H3K27 methylation of PRC2 target genes and inducing regression of human lymphoma xenograft tumors. Interestingly, EED226 also effectively inhibits PRC2 containing mutant EZH2 protein resistant to SAM-competitive inhibitors. Together, we show EED226 inhibits PRC2 activity via an allosteric mechanism and offers opportunity for treatment of PRC2-dependent cancers. Citation Format: Wei Qi, Kehao Zhao, Justin Gu, Ying Huang, Youzhen Wang, Hailong Zhang, Man Zhang, Jeff Zhang, Zhengtian Yu, Ling Li, Lin Teng, Shannon Chuai, Chao Zhang, Mengxi Zhao, HoMan Chan, Zijun Chen, Douglas Fang, Fei Qi, Leying Feng, Lijian Feng, Yuan Gao, Hui Ge, Xinjian Ge, Andreas Lingel, Guobin Li, Ying Lin, Yueqin Liu, Fangjun Luo, Minlong Shi, Long Wang, Zhaofu Wang, Yanyan Yu, Jue Zeng, Chenhui Zeng, Lijun Zhang, Qiong Zhang, Shaolian Zhou, Counde Oyang, Peter Atadja, En Li. An allosteric PRC2 inhibitor targeting the H3K27me3 binding pocket of EED [abstract] . In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr LB-288. doi:10.1158/1538-7445.AM2017-LB-288
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 73, No. 1 ( 2013-01-01), p. 307-318
    Abstract: A truncated version of retinoid X receptor-α, tRXR-α, promotes cancer cell survival by activating the phosphoinositide 3-kinase (PI3K)/AKT pathway. However, targeting the tRXR-α–mediated survival pathway for cancer treatment remains to be explored. We report here our identification of a new natural product molecule, CF31, a xanthone isolated from Cratoxylum formosum ssp. pruniflorum, and the biologic evaluation of its regulation of the tRXR-α–mediated PI3K/AKT pathway. CF31 binds RXR-α and its binding results in inhibition of RXR-α transactivation. Through RXR-α mutational analysis and computational studies, we show that Arg316 of RXR-α, known to form salt bridges with certain RXR-α ligands, such as 9-cis-retinoic acid (9-cis-RA), is not required for the antagonist effect of CF31, showing a distinct binding mode. Evaluation of several CF31 analogs suggests that the antagonist effect is mainly attributed to an interference with Leu451 of helix H12 in RXR-α. CF31 is a potent inhibitor of AKT activation in various cancer cell lines. When combined with TNF-α, it suppresses TNF-α activation of AKT by inhibiting TNF-α–induced tRXR-α interaction with the p85α regulatory subunit of PI3K. CF31 inhibition of TNF-α activation of AKT also results in TNF-α–dependent activation of caspase-8 and apoptosis. Together, our results show that CF31 is an effective converter of TNF-α signaling from survival to death by targeting tRXR-α in a unique mode and suggest that identification of a natural product that targets an RXR-mediated cell survival pathway that regulates PI3K/AKT may offer a new therapeutic strategy to kill cancer cells. Cancer Res; 73(1); 307–18. ©2012 AACR.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2013
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2009
    In:  Clinical Cancer Research Vol. 15, No. 16 ( 2009-08-15), p. 5161-5169
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 15, No. 16 ( 2009-08-15), p. 5161-5169
    Abstract: Purpose: Lignans such as secoisolariciresinol diglucoside in flaxseed, are metabolizes to bioactive mammalian lignans of END and ENL. Because mammalian lignans have chemical structural similarity to the natural estrogen, they are thought to behave like selective estrogen receptor modulators and therefore have anticancer effect against hormone-related cancers. We isolated a series of lignan compounds, named as Vitexins, from the seed of Chinese herb Vitex Negundo. Experimental Design: We purified several Vitexin lignan compounds. Cytotoxic and antitumor effects were analyzed in cancer cells and in tumor xenograft models. In vivo metabolism of Vitexins was determined in rat. Results: Contrasts to the classic lignans, Vitexins were not metabolized to END and ENL. A mixture of Vitexins EVn-50 and purified Vitexin compound 6-hydroxy-4-(4-hydroxy-3-methoxyphenyl)-3-hydroxymethyl-7-methoxy-3, 4-dihydro-2-naphthaldehyde have cytotoxic effect on breast, prostate, and ovarian cancer cells and induces apoptosis with cleavage in poly ADP ribose polymerase protein, up-regulation of Bax, and down-regulation of Bcl-2. This induction of apoptosis seems to be mediated by activation of caspases because inhibition of caspases activity significantly reduced induced apoptosis. We showed a broad antitumor activity of EVn-50 on seven tumor xenograft models including breast, prostate, liver, and cervical cancers. Consistent with in vitro data, EVn-50 treatment induced apoptosis, down-regulated of Bcl-2, and up-regulated Bax in tumor xenografts. Conclusion: Vitexin is a class of nature lignan compounds, whose action and anticancer effect is mediated by the mechanisms different from the classic lignans. Vitexin-induced antitumor effect and cytotoxic activity is exerted through proapoptotic process, which is mediated by a decreased Bcl-2/Bax ratio and activation of caspases. (Clin Cancer Res 2009;15(16):5161–9)
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2009
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 18 ( 2023-09-15), p. 3059-3076
    Abstract: The therapeutic options for treating pancreatic ductal adenocarcinoma (PDAC) are limited, and resistance to gemcitabine, a cornerstone of PDAC chemotherapy regimens, remains a major challenge. N6-methyladenosine (m6A) is a prevalent modification in mRNA that has been linked to diverse biological processes in human diseases. Herein, by characterizing the global m6A profile in a panel of gemcitabine-sensitive and gemcitabine-insensitive PDAC cells, we identified a key role for elevated m6A modification of the master G0–G1 regulator FZR1 in regulating gemcitabine sensitivity. Targeting FZR1 m6A modification augmented the response to gemcitabine treatment in gemcitabine-resistant PDAC cells both in vitro and in vivo. Mechanistically, GEMIN5 was identified as a novel m6A mediator that specifically bound to m6A-modified FZR1 and recruited the eIF3 translation initiation complex to accelerate FZR1 translation. FZR1 upregulation maintained the G0–G1 quiescent state and suppressed gemcitabine sensitivity in PDAC cells. Clinical analysis further demonstrated that both high levels of FZR1 m6A modification and FZR1 protein corresponded to poor response to gemcitabine. These findings reveal the critical function of m6A modification in regulating gemcitabine sensitivity in PDAC and identify the FZR1–GEMIN5 axis as a potential target to enhance gemcitabine response. Significance: Increased FZR1 translation induced by m6A modification engenders a gemcitabine-resistant phenotype by inducing a quiescent state and confers a targetable vulnerability to improve treatment response in PDAC.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 28, No. 9 ( 2022-05-02), p. 1841-1853
    Abstract: Cell-free DNA (cfDNA) offers a noninvasive approach to monitor cancer. Here we develop a method using whole-exome sequencing (WES) of cfDNA for simultaneously monitoring the full spectrum of cancer treatment outcomes, including minimal residual disease (MRD), recurrence, evolution, and second primary cancers. Experimental Design: Three simulation datasets were generated from 26 patients with cancer to benchmark the detection performance of MRD/recurrence and second primary cancers. For further validation, cfDNA samples (n = 76) from patients with cancer (n = 35) with six different cancer types were used for performance validation during various treatments. Results: We present a cfDNA-based cancer monitoring method, named cfTrack. Taking advantage of the broad genome coverage of WES data, cfTrack can sensitively detect MRD and cancer recurrence by integrating signals across known clonal tumor mutations of a patient. In addition, cfTrack detects tumor evolution and second primary cancers by de novo identifying emerging tumor mutations. A series of machine learning and statistical denoising techniques are applied to enhance the detection power. On the simulation data, cfTrack achieved an average AUC of 99% on the validation dataset and 100% on the independent dataset in detecting recurrence in samples with tumor fractions ≥0.05%. In addition, cfTrack yielded an average AUC of 88% in detecting second primary cancers in samples with tumor fractions ≥0.2%. On real data, cfTrack accurately monitors tumor evolution during treatment, which cannot be accomplished by previous methods. Conclusions: Our results demonstrated that cfTrack can sensitively and specifically monitor the full spectrum of cancer treatment outcomes using exome-wide mutation analysis of cfDNA.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2013
    In:  Cancer Research Vol. 73, No. 17 ( 2013-09-01), p. 5371-5380
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 73, No. 17 ( 2013-09-01), p. 5371-5380
    Abstract: The von Hippel–Lindau (VHL) tumor suppressor pVHL is lost in the majority of clear-cell renal cell carcinomas (RCC). Activation of the PI3K/AKT/mTOR pathway is also common in RCC, with PTEN loss occurring in approximately 30% of the cases, but other mechanisms responsible for activating AKT at a wider level in this setting are undefined. Plant homeodomain protein Jade-1 (PHF17) is a candidate renal tumor suppressor stabilized by pVHL. Here, using kinase arrays, we identified phospho-AKT1 as an important target of Jade-1. Overexpressing or silencing Jade-1 in RCC cells increased or decreased levels of endogenous phospho-AKT/AKT1. Furthermore, reintroducing pVHL into RCC cells increased endogenous Jade-1 and suppressed endogenous levels of phospho-AKT, which colocalized with and bound to Jade-1. The N-terminus of Jade-1 bound both the catalytic domain and the C-terminal regulatory tail of AKT, suggesting a mechanism through which Jade-1 inhibited AKT kinase activity. Intriguingly, RCC precursor cells where Jade-1 was silenced exhibited an increased capacity for AKT-dependent anchorage-independent growth, in support of a tumor suppressor function for Jade-1 in RCC. In support of this concept, an in silico expression analysis suggested that reduced Jade-1 expression is a poor prognostic factor in clear-cell RCC that is associated with activation of an AKT1 target gene signature. Taken together, our results identify 2 mechanisms for Jade-1 fine control of AKT/AKT1 in RCC, through loss of pVHL, which decreases Jade-1 protein, or through attenuation in Jade-1 expression. These findings help explain the pathologic cooperativity in clear-cell RCC between PTEN inactivation and pVHL loss, which leads to decreased Jade-1 levels that superactivate AKT. In addition, they prompt further investigation of Jade-1 as a candidate biomarker and tumor suppressor in clear-cell RCC. Cancer Res; 73(17); 5371–80. ©2013 AACR.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2013
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 81, No. 13_Supplement ( 2021-07-01), p. 24-24
    Abstract: Early cancer detection by cell-free DNA (cfDNA) faces multiple challenges: the low fraction of tumor DNA in cfDNA, the molecular heterogeneity of cancer, and sample sizes that are too small to reflect the heterogeneous patient population. We have developed an integrated cancer detection system, CancerRadar, that addresses all three challenges. It consists of (1) a cost-effective experimental assay, cfMethyl-Seq, for genome-wide methylation profiling of cfDNA, which provides & gt;12-fold enrichment over Whole Genome Bisulfite Sequencing (WGBS) in CpG islands; and (2) a computational platform to extract information from cfMethyl-Seq data and diagnose the patient. The platform derives cfDNA methylations, cfDNA fragment sizes, copy number variations (CNV), and microbial composition from the raw cfMethyl-Seq data, and performs multi-feature ensemble learning. We demonstrate the power of CancerRadar by detecting and locating cancer in a cohort of 275 colon, liver, lung, and stomach cancer patients and 204 non-cancer individuals. For cancer detection, we achieve a sensitivity of 85.6%± 6.7% across all stages and 80.6%±9.1% for early stages (I and II), with a specificity of 99% in both cases. These metrics are derived using leave-one-out cross-validation. During independent validation on a reserved subsample, it achieves a sensitivity of 89.1%±11.3% across all stages and 85.7%±14.2% for early stages, with a specificity of 97% (one false positive). For locating a tumor's tissue of origin (TOO), CancerRadar achieved an accuracy of 91.5%±5.0% for all stages and 89.1%±7.3% for early stages, on an independent subsample. This study is the first to integrate cfDNA methylation, cfDNA fragment size, CNV, and microbial composition analyses for cancer detection on the same patient cohort. cfDNA methylation was the most useful for detecting cancer, but including features from other categories significantly increased the performance, especially for early-stage cancer. In contrast, with respect to TOO prediction, methylation-derived features were overwhelmingly important while including other features did not further improve performance. To fully exploit the power of cfDNA methylation, we identified four types of methylation markers with different characteristics. We have also improved our previous read-level deconvolution algorithm to more accurately identify trace tumor signals. Finally, our data show that as training sample sizes increase, the detection power of CancerRadar continues to increase. Although all existing cancer detection studies are limited by training sample sizes, the CancerRadar system uniquely and cost-effectively retains the genome-wide epigenetic and genetic profiles of cancer abnormalities, thereby permitting the classification models to learn and exploit newly significant features as training cohorts grow, as well as expanding their scope to other cancer types. Citation Format: Mary Stackpole, Weihua Zeng, Shuo Li, Chun-Chi Liu, Yonggang Zhou, Shanshan He, Angela Yeh, Ziye Wang, Fengzhu Sun, Qingjiao Li, Zuyang Yuan, Asli Yildirim, Pin Jung Chen, Paul Winograd, Shize Li, Zorawar Noor, Edward Garon, Samuel French, Clara Magyar, Sarah Dry, Clara Lajonchere, Daniel Geschwind, Gina Choi, Sammy Saab, Frank Alber, Wing Hung Wong, Steven Dubinett, Denise Aberle, Vatche Agopian, Steven-Huy Han, Xiaohui Ni, Wenyuan Li, Xianghong Jasmine Zhou. Multi-feature ensemble learning on cell-free dna for accurately detecting and locating cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 24.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...