GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences  (53)
  • 1
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 56, No. 6 ( 2007), p. 3553-
    Abstract: Basing on measuring the luminescence spectra at room temperature pumped by 975nm light, the action mechanism of Na+ in the novel Yb3+,Na+:CaF2 crystal was systemically investigated. The relation between the concentration of doping Na+ and the laser operation threshold was analyzed. The optimum match concentration for Yb3+,Na+:CaF2 with low laser threshold was obtained. In the experiment, the lowest laser operation threshold at only 70mW of absorbing pumped power for 2%Yb3+, 3%Na+:CaF2 crystal is realized, which is in good agreement with the analysis of luminescence properties.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2007
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 57, No. 5 ( 2008), p. 2966-
    Abstract: The saturable absorption of Yb3+/Na+ codoped CaF2 crystals at 1050nm has been demonstrated by comparative experiments by inserting the novel Yb3+,Na+:CaF2 crystal with different doping concentrations into a Yb:YAG laser in stable continuous wave operation, which is the cause for the crystals working as the gain material to tend to self-Q-switching at 1050nm. The results show that the dominative element is Yb3+ rather than Na+ for saturable absorption action of the crystals. However, the effect of Q-switching by codoping Na+ into the CaF2 crystals can be greatly improved so that the Yb3+,Na+:CaF2 crystals with optimum concentration and doping ratio can be used as a Q-switching element at 1050nm.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2008
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 65, No. 15 ( 2016), p. 154207-
    Abstract: Previously reported chalcogenide glass Raman fiber lasers are made of glass compositions such as As2S3 or As2Se3. However, due to the high toxicity of the element arsenic, there is a potential risk in the glass preparation, fiber drawing, and testing processes. Therefore, we need to explore new environmentally friendly chalcogenide glasses that do not contain As for Raman fiber lasers. Studies have shown that the chalcogenide glasses of Ge-Sb-Se system have excellent infrared transmissions and good environmental friendliness, and thus they are excellent candidates for chalcogenide glass Raman fiber lasers. However, their Raman gains have not been reported. Then Raman gain coefficients can be obtained by experimental measurements and theoretical analyses. The experimental method requires expensive laboratory equipments, a complex optical path, and precision adjustments. Therefore, the design and preparation of new chalcogenide glass fiber with high Raman gain require the theoretical analysis of the Raman gain characteristics in a particular glass component glass. In this work, four chalcogenide glasses, respectively, with compositions of As2S3, As2Se3, Ge20Sb15Se65 and Ge28Sb12Se60 (mol%) are prepared. Refractive indices, infrared transmission and Raman spectra of these glass samples are measured. By using spontaneous Raman scattering theory combined with the measured Raman spectral data, the values of Raman gain coefficient gR of the chalcogenide glasses are calculated and calibrated by a quartz glass sample. Results show that the gR of As2S3 glass is 6010-13 m/W at 230 cm-1 Raman shift and the gR of As2Se3 glass is 22310-13 m/W at 340 cm-1 Raman shift, which are consistent with the experimental results reported in the literature. Compared with the traditional method, the present method used for calculating the fiber Raman gain coefficient provides great convenience for exploring new chalcogenide glasses with high Raman gain. By using this method, we obtain the gR values of Ge20Sb15Se65 and Ge28Sb12Se60glasses at 200 cm-1 Raman shift, which are 21510-13 m/W and 11110-13 m/W respectively. Meanwhile, we analyze the effects of composition and network structure of chalcogenide glass samples on the Raman gain coefficient and gain spectrum. There are two Raman peaks at 165 cm-1 and 200 cm-1 Raman shift, which are attributed to Ge-Ge bond vibration and Ge-Se bond vibration of common apex GeSe4/2 tetrahedral structure respectively. It could be found that the Raman gain coefficient of Ge20Sb15Se65 glass is bigger than that of Ge28Sb12Se60glass at 200 cm-1 Raman shift because of more Ge-Se bonds. By further optimizing the ratio of components of Ge-Sb-Se chalcogenide glass, we could obtain higher Raman gain coefficient at a particular frequency shift. These results show that the Raman gain coefficient of Ge-Sb-Se chalcogenide glass without poisonous element is up to over 200 times that of the ordinary quartz glass, which provides a new possibility for environment-friendly Raman fiber laser material.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2016
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 57, No. 10 ( 2008), p. 6386-
    Abstract: Based on the rigorous coupled-wave analysis, the optimized design for a transmission two-gratings mask for 13.4nm soft X-ray interference lithography has been accomplished. Then a large area transmission gratings was successfully fabricated by electron beam lithography (EBL), which has an area of 1.5mm×1.5mm, ruling period of 100nm, Cr relief thickness of 50nm, gap/period of 0.6, and Si3N4 substrate thickness of 100nm. Based on the quantitative estimation of the measurement data, the first and second order diffraction efficiencies were determined as 4.41% and 0.49%, respectively, in good agreement with the numerical simulation results. Through comparison between the measurement and the numerical simulation results, it was shown that the relief is entirely vertical and the gap/period was well controlled. This two-grating mask will be used installed on the soft X-ray interference lithography endstation at Shanghai Synchrotron Radiation Facility (SSRF). With its 1st and 2nd order diffraction, 50nm period and 25nm period gratings can be cost-effectively fabricated, respectively.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2008
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2007
    In:  Acta Physica Sinica Vol. 56, No. 5 ( 2007), p. 2714-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 56, No. 5 ( 2007), p. 2714-
    Abstract: The upconversion luminescence spectra of Tm3+/Yb3+-codoped oxyhalide tellurite glasses have been investigated, and the action mechanisms of Tm2O3 content on upconversion luminescence of Tm3+/Yb3+-codoped oxyhalide tellurite glasses were analyzed. The results showed that there exists concentration quenching of Tm3+ in oxyhalide tellurite glasses. With increasing Tm2O3 content, upconversion blue and red emission intensities of Tm3+ first increase, reach its maximum at Tm2O3%=0.1mol%, and then decrease. The obtained results are conducive to increase upconversion luminescence efficiency of Tm3+.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2007
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2004
    In:  Acta Physica Sinica Vol. 53, No. 6 ( 2004), p. 1840-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 53, No. 6 ( 2004), p. 1840-
    Abstract: The absorption spectrum, upconversion spectra and Raman spectrum of Er3+-doped heavy metal oxyfluorosilicate glasses have been investigated, and luminescence mechanisms of Er3+ in heavy metal oxyfluorosilicate glasses were analyzed. The results showed that blue, green and red emission centered around 411, 525, 543, and 655 nm, corresponding to the 2H9/2→4I15/2,2H11/2→4I15/2,4S3/2→4I15/2, and4F9/2→4I15/2transitions of Er3+ ions, respectively, were simultaneously observed at room temperature under 975 nm diode laser excitation, and the intensity for blue, green and red emissions increases with increasing Er2O3 concentrations. There are two basic upconversion mechanisms: excited state absorption and energy transfer, and a two-photon upconversion process is assigned to the intense green and red emissions, respectively, while a three-photon process is responsible for weak blue upconversion. Raman spectrum indicates that the lead fluoride in the glass network play an important role in upconvesion fluorescence of Er3+.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2004
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2008
    In:  Acta Physica Sinica Vol. 57, No. 7 ( 2008), p. 4328-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 57, No. 7 ( 2008), p. 4328-
    Abstract: Zn1-xCoxO (x=0.01, 0.02) dilute magnetic semiconductor thin films deposited on Si (001) substrates at 650℃ by pulsed laser deposition method were studied by X-ray absorption fine structure, X-ray diffraction and magnetic measurement. The typical ferromagnetic hysteresis curves were obtained by superconducting quantum interference device magnetometry at room temperature. The X-ray diffraction results showed that Zn1-xCoxO films were of the wurtzite structure. The X-ray absorption fine structure results revealed that the Co atoms were incorporated into the ZnO lattice and located at the substitutional Zn sites, and a homogeneous phase of Zn1-xCoxO was formed. Comparing the experimental curves with the theoretical calculation results, the additional peak C was assigned to the oxygen vacancies, which indicated that the ferromagnetism of Zn1-xCoxO films was strongly correlated with the existence of oxygen vacancies.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2008
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 52, No. 6 ( 2003), p. 1533-
    Abstract: The absorption and emission properties of the concentrations and thickness of Yb3+-doped phosphate glasses have been investigated. The integrated cro ss section, absorption cross section, emission cross section, the spontaneous emission probability, and the effective line width of fluorescence of Yb3+- doped phosphate glasses were determined. The effect of the radiation trapping on spectroscopic properties was discussed. It was found that the effect of radiation trapping increases remarkably with the concentration and thickness of Yb3+-doped phosphate glasses. Radiation trapping causes significant lengthening of the measured fluorescence lifetime τf which is longer than the radia tive lifetime τrad. The error in measuring the fluorescence lifetime unde r low Yb3+ ion concentration (0.2mol%Yb2O3) is 3 0% and the error is 43% under high Yb3+ ion concentration (6mol%Yb2O3 ) 6mol%. Radiation trapping also significantly increases the effective line width Δλeff. I t will be increased by 14% and 30% larger under low and high Yb3+ ion concentration respectively.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2003
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2016
    In:  Acta Physica Sinica Vol. 65, No. 7 ( 2016), p. 075201-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 65, No. 7 ( 2016), p. 075201-
    Abstract: Owing to high efficiency for delivering thermal radiation from Z-pinch plasma to an inertial fusion capsule, Z-pinch dynamic hohlraum (ZPDH) is a promising indirect-drive inertial confinement fusion (ICF) approach. ZPDH is created by accelerating an annular tungsten Z-pinch plasma radially inward to an internal low density convertor. The collision launches a radiating shock traveling inward. Radiations emitted from the shock, after being trapped and thermalized by the optically thick tungsten plasma, drive the internal fusion capsule to implode. In our previous experiments, shock propagating process has never been imaged or even never been formed, due to low drive current (about 1.3 MA). In this paper, the ZPDH has a load of single tungsten wire array embedded in a cylindrical 16 mg/cm3 C15H20O6 foam, and the tungsten wire array is explored using JuLong-1 facility (also named PTS facility) driven by current with a peak value of 7-8 MA and rising time of 60-70 ns (from 10% to 90%). Several results are presented for improving the understanding of the physics of the shock propagating and hohlraum forming. For the high optical depth in tungsten plasmas around the foam, radially directly diagnosing hohlraum radiation distribution along axis is impossible. The most convenient way to diagnose the radiation symmetry and the shock evolution is to take the end-on X-ray images. The time-resolved X-ray images of annular radiating shock evolution, which are performed with a 10-frame time-gated X-ray pinhole camera located at 0 with respect to the Z-pinch axis, are obtained for the first time in China. By analyzing the radial X-ray emission power waveform and intensity distribution of end-on radiation image, the process of wire array plasma impacting on the foam convertor and properties of dynamic hohlraum radiation are discussed. The shock emission structures are found to be circular, similar to the results predicted theoretically. The shock velocity which seems to be constant in the whole process of inward propagating is linearly fitted to be (14.21.7) cm/s. The annular width of shock emission is 0.8-0.9 mm, which is inferred from the full width at half maximum of radial lineout of end-on X-ray image at time t=-11.9 ns and the blurring effect of shock velocity. The radiation symmetry is assessed by statistic property of mean intensity of 36 sectors of end-on X-ray image evenly divided by 10. The standard deviation of azimuthal shock emission intensity is 10% while that of hohlraum region prior to shock impact is 4.2%. The azimuthal symmetry improvement from shock emission to hohlraum radiation is a piece of exciting news for ZPDH driven ICF.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2016
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2015
    In:  Acta Physica Sinica Vol. 64, No. 4 ( 2015), p. 048902-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 64, No. 4 ( 2015), p. 048902-
    Abstract: The model of interdependent network based on positive/negative correlation of the degree is constructed by the typical Barabási-Albert network in this paper. Dependency modality and dependency degree are considered in the model. Two parameters F and K are defined, which represent the proportion of dependency node and the redundancy of dependency, respectively. We study the influences of different values of F and K on the robustness of interdependent network in cascading failures under degree-based attacks and random attacks and also compare the results with those from the random interdependent network model. The simulation results show that the robustness of both random independency and interdependent network based on positive/negative correlation of the degree decreases as F increases and increases as K increases; in the model of full interdependence (F = 1), the robustness of interdependent network based on positive correlation of the degree is optimal under random attacks; the interdependent network based on negative correlation of the degree shows stronger robustness in the model of partial interdependence (F= 0.2, 0.5, 0.8). While the interdependent network based on positive correlation of the degree shows poorer robustness with any value of F under degree-based attacks.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2015
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...