GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences  (625)
  • 1
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2017
    In:  Acta Physica Sinica Vol. 66, No. 9 ( 2017), p. 095202-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 66, No. 9 ( 2017), p. 095202-
    Abstract: Laboratory astrophysics is a rapid developing field studying astrophysical or astronomical processes on a high-power pulsed facility in laboratory. It has been proved that with the similarity criteria, the parameters in astrophysical processes can be transformed into those under laboratory conditions. With appropriate experimental designs the astrophysical processes can be simulated in laboratory in a detailed and controlled way. Magnetic fields play an important role in many astrophysical processes. Recently, the generation of strong magnetic fields and their effects on relevant astrophysics have attracted much interest. According to our previous work, a strong magnetic field can be induced by a huge current formed by the background cold electron flow around the laser spot when high power laser pulses irradiate a metal wire. In this paper we use this scheme to produce a strong magnetic field and observe its effect on a bow shock on the Shenguang II (SG II) laser facility. The strength of the magnetic field is measured by B-dot detectors. With the measured results, the magnetic field distribution is calculated by using a three-dimension code. Another bunch of lasers irradiates a CH planar target to generate a high-speed plasma. A bow shock is formed in the interaction of the high-speed plasma with the metal wire under the strong magnetic condition. The effects of the strong magnetic field on the bow shock are observed by shadowgraphy and interferometry. It is shown that the Mach number of the plasma flow is reduced by the magnetic field, leading to an increase of opening angle of the bow shock and a decrease of the density ratio between downstream and upstream. In addition, according to the similarity criteria, the experimental parameters of plasma are scaled to those in space. The transformed results show that the magnetized plasma around the wire, produced by X-ray emitted from the laser-irradiated planar target in the experiment, is suitable for simulating solar wind in astrophysics. In this paper, we provide another method to produce strong magnetic field, apply it to a bow shock laboratory astrophysical study, and also generate the magnetized plasma which can be used to simulate solar wind in the future experiments.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2017
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 61, No. 24 ( 2012), p. 244207-
    Abstract: In this paper, the influences of fiber core structure on photonic band gap and transmission loss for hollow-core photonic crystal fiber are investigated, and the proper fiber core structure of fiber preparation technology is obtained. First, the band gap structure of triangular lattice of hollow core photonic crystal fiber with a fixed duty ratio is calculated by using plane wave expansion method. When the transmission wavelength λ=1.55 μm, the structural parameters of the optical fiber are figured out. The value range of the core diameter is given by simulating the influences of core diameter on the band gap location and size, and the value of core wall thickness is obtained through analyzing the leak loss characteristics. Then the fiber end view drawing is designed according to the analytical results. The mode field distributions are simulated by the full-vectorial finite element method under different core diameters. Through the contrast analysis the best fiber core radius with R=1.6 Λ—1.75 Λ is obtained. The results indicate that choosing appropriate core structure not only can meet the photonic band gap and loss characteristics of hollow-core photonic crystal fiber, but also can properly reduce the difficulty in the preparation technology of fiber.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2012
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 56, No. 1 ( 2007), p. 15-
    Abstract: Holographic polymer-dispersed liquid crystal (HPDLC) is formed by the diffusion of monomers and liquid crystals as a kind of switchable volume holography. The kinetics investigation of HPDLC is very important to improve the diffraction efficiency and optimize the formation conditions of HPDLC. Fourier analysis is widely adopted as analytical method of kinetics. In this paper, we make use of the one-dimensional infinite-length analytical method to develop a kinetics simulation for the real-time formation of the grating. Simultaneously, corresponding diffused kinetics equations and polymeric kinetics equations are given. Then, we find the relationship between these equations and refractive index modulation Δn, and obtain a diffraction efficiency equation which is appropriate for transmission Bragg volume grating. Finally, the ways of increasing diffraction efficiency of HPDLC is discussed. Our theoretical study should provide some useful guidance to improve the properties of HPDLC.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2007
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 51, No. 3 ( 2002), p. 620-
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2002
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 57, No. 11 ( 2008), p. 7344-
    Abstract: In this paper, we report a kind of electrically tunable multiplexed grating which is prepared conveniently with a single step holographic exposure on the mixture of nematic liquid crystals and photosensitive monomers. The periods of two sub-gratings contained in the multiplexed grating are tested with scanning electronic microscopy (SEM), the results show that their periods are 1 μm and 4 μm, respectively. Diffraction properties of this multiplexed grating are tested, and it is found that there are two diffraction peaks when the testing beam incidents at two different incidence angles. The corresponding diffraction efficiencies of the two sub-gratings are 90% (for Λ=1μm) and 60% (for Λ=4μm), which have a good agreement with the theoretical results obtained by coupled wave theory (the theoretical values being 92.57% for Λ=1μm and 63.68% for Λ=1μm). In addition, the electro-optical performance indicates, that the threshold voltage for the sub-gratings are similar with each other, the V90 of Λ=1μm is 7V/μm and 6V/μm for Λ=4μm, respectively. Such results show the good synchronized electrically-tunable property of multiplexed grating.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2008
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 59, No. 9 ( 2010), p. 6231-
    Abstract: Photon statistics of the weak squeezed vacuum field from an optical parametric oscillatior (OPO) is investigated both in theory and by experiment . The strong photon bunching effect of weak squeezed vacuum field, which can be used as an important source in quantum optics and quantum measurement, was demonstrated. We have experimentally produced the weak squeezed vacuum at the center wavelength of D2 line of the cesium atom by the OPO operating far below the threshold . The second-order correlation function was measured based on the Hanbury-Brown-Twiss scheme, and the result is consistent with theoretical analysis.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2010
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2015
    In:  Acta Physica Sinica Vol. 64, No. 16 ( 2015), p. 165201-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 64, No. 16 ( 2015), p. 165201-
    Abstract: Magnetic reconnection (MR) is a universal physical process in plasma, in which the stored magnetic energy is converted into high-velocity flows and energetic particles. It is believed that MR plays an important role in many plasma phenomena such as solar fare, gamma-ray burst, fusion plasma instabilities, etc.. The process of MR has been studied in detail by dedicated magnetic-driven experiments. Here, we report the measurements of magnetic reconnection driven by Shenguang II lasers and Gekko XVII lasers. A collimated plasma jet is observed along the direction perpendicular to the reconnection plane with the optical probing. The present jet is very different from traditional magnetic reconnection outflows as known in the two-dimensional reconnection plane. In our experiment, by changing the delay of optical probing beam, we measure the temporal evolution of jet from 0.5 ns to 2.5 ns and its velocity around 400 km/s is deduced. Highcollimated jet is also confirmed by its strong X-ray radiation recorded by an X-ray pinhole camera. With the help of optical interferograms we calculate the jet configuration and its density distribution by using Abel inverting technique. A magnetic spectrometer with an energy range from hundred eV up to one MeV is installed in front of the jet, in the direction perpendicular to the reconnection plane, to measure the accelerated electrons. Two cases are considered for checking the acceleration of electrons. The results show that more accelerated electrons can be found in the reconnection case than in the case without reconnection. We propose that the formation and collimation of the plasma jet, and the electron energy spectrum may be possible directly influenced by the reconnection electric field, which is very important for understanding the energy conversion in the process of MR and establishment of the theoretical model. Finally the electron energy spectra of three different materials Al, Ta and Au are also shown in our work. The results indicate that the higher atomic number material can obtain a better signal-noise ratio, which provides some helpful references for our future work.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2015
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2018
    In:  Acta Physica Sinica Vol. 67, No. 8 ( 2018), p. 084102-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 67, No. 8 ( 2018), p. 084102-
    Abstract: China Academy of Engineering Physics terahertz free electron laser (CAEP THz FEL,CTFEL) is the first THz FEL oscillator in China,which is jointly built by CAEP,Peking University and Tsinghua University.It is designed as a high-repetition-rate and high-duty-cycle linac-based FEL facility. This THz FEL mainly consists of a gallium arsenide (GaAs) photocathode high-voltage direct current (DC) gun,a superconducting radio frequency (RF) linac,a planar undulator,and a quasi-concentric optical resonator. The DC gun provides a high-brightness electron beam with the bunch charge of about 100 pC and the repetition rate of 54.167~MHz.The normalized emittance of the electron beam is less than 10m,and the energy spread is less than 0.75%.A 24-cell superconducting RF accelerator provides an effective field gradient of about 10 MV/m and energizes the electron beam to 6-8~MeV.The beam then goes through the undulator and generates the spontaneous radiation,which is reflected back and forth in the optical resonator and then stimulated by the electron beam. The first stimulated saturation of CTFEL in the macro-pulse mode was obtained in August,2017.In this paper,the THz spectrum is measured by a Fourier spectrometer (Bruker VERTEX 80 V).The macro-pulse energy is measured by an absolute energy meter from Thomas Keating Instruments.The longitudinal beam length is preliminarily calculated by the auto-correlation curve from the time-domain signal of the spectrometer.The macro-pulse duration is captured by a GeGa cryogenic detector from QMC Instrument.The measurement results indicate that the terahertz laser frequency is continuously adjustable from 2 THz to 3 THz.The macro-pulse average power is more than 10 W and the micro-pulse power is more than 0.3 MW.The single-pass gain is larger than 2.5%. This facility is now working in macro-pulse mode in the first step,also called step one.The minimum macro-pulse duration is about 50s and the maximum is about 2 ms.The macro-pulse repetition is 1 Hz or 5 Hz.The typical pulse duration and repetition rate are 1 ms and 1 Hz,respectively.In the middle of 2018,the duty cycle will upgrade to more than 10% as step two.And the continuous wave (CW) operation will be obtained in step three by the end of 2018.The spectrum adjustment range will also be expanded to cover from 1 THz to 4 THz by then. Some application experiments have been carried out on the platform of CTFEL.This facility will greatly promote the development of THz science and its applications in material science,chemistry science,biomedicine science and many other cutting-edge areas in general.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2018
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 69, No. 8 ( 2020), p. 080301-
    Abstract: Qubit encoded in single neutral atoms is a basic experimental platform for studying the quantum computation, quantum information processing and quantum simulation. The extension of the coherence time has been an important task in recent years. On the basis of the single cesium neutral atom trapped in blued-detuned dipole trap, we study the coherence time of a qubit, which is encoded in a pair of magnetically insensitive ground states of cesium atom (〈inline-formula〉〈tex-math id="M5"〉\begin{document}$\left| {\rm{0}} \right\rangle = \left| {{\rm{6}}{{\rm{S}}_{1/2}},F = 3,{m_F} = - 1} \right\rangle $\end{document}〈/tex-math〉〈alternatives〉〈graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20192001_M5.jpg"/〉〈graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20192001_M5.png"/〉〈/alternatives〉〈/inline-formula〉 and 〈inline-formula〉〈tex-math id="M6"〉\begin{document}$\left| 1 \right\rangle = \left| {{\rm{6}}{{\rm{S}}_{1/2}},F = 4,{m_F} = + 1} \right\rangle $\end{document}〈/tex-math〉〈alternatives〉〈graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20192001_M6.jpg"/〉〈graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20192001_M6.png"/〉〈/alternatives〉〈/inline-formula〉), in the “magic” magnetic field condition. By adopting a two-photon process, in which a microwave photon and an RF photon are used, we obtain the coherence manipulation of the qubit. The dependence of differential energy shift on magnetic field is experimentally studied, and the “magic” magnetic field is determined. In this magic condition, the first derivative of differential energy shift between 〈inline-formula〉〈tex-math id="M7"〉\begin{document}$\left| {\rm{0}} \right\rangle = \left| {{\rm{6}}{{\rm{S}}_{1/2}},F = 3,{m_F} = - 1} \right\rangle $\end{document}〈/tex-math〉〈alternatives〉〈graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20192001_M7.jpg"/〉〈graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20192001_M7.png"/〉〈/alternatives〉〈/inline-formula〉 and 〈inline-formula〉〈tex-math id="M8"〉\begin{document}$\left| 1 \right\rangle = \left| {{\rm{6}}{{\rm{S}}_{1/2}},F = 4,{m_F} = + 1} \right\rangle $\end{document}〈/tex-math〉〈alternatives〉〈graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20192001_M8.jpg"/〉〈graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="8-20192001_M8.png"/〉〈/alternatives〉〈/inline-formula〉 in quantized magnet field is zero, which means that the qubit is immune to the fluctuation of magnetic field and the coherence time can be substantially prolonged. The experimentally obtained magic magnetic field is 〈i〉B〈/i〉 = 1.4(2) Gauss, which is in good agreement with the theoretical calculation value 〈i〉B〈/i〉 = 1.393 Gauss. Finally, we measure the qubit coherence time by setting the quantized magnetic field to be at magic point 〈i〉B〈/i〉 = 1.396 Gauss. The qubit coherence time is measured to be 11(1) ms by Ramsey interferometer, where the main decoherence factor is the inhomogeneous dephasing due to the atomic motion in the dipole trap. This incoherence factor can be dramatically suppressed by a spin-echo process where an additional π-pulse is inserted in between the two π/2 pulses. At the magic magnetic point the qubit coherence time can be extended to 1 s by the spin-echo method.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2020
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 71, No. 20 ( 2022), p. 208501-
    Abstract: Gallium oxide (Ga〈sub〉2〈/sub〉O〈sub〉3〈/sub〉) has the natural advantages in deep ultraviolet absorbance for performing deep ultraviolet photodetection. Owing to the vital application of photodetector array in optical imaging, in this work, we introduce a 4×4 Ga〈sub〉2〈/sub〉O〈sub〉3〈/sub〉-based photodetector array with five-finger interdigital electrodes, in which the high-quality and uniform Ga〈sub〉2〈/sub〉O〈sub〉3〈/sub〉 thin film is grown by using metal-organic chemical vapor deposition technique, and the device is fabricated by using the following methods: ultraviolet photolithography, lift-off, and ion beam sputtering . The photodetector cell possesses a responsivity of 2.65×10〈sup〉3〈/sup〉 A/W, a detectivity of 2.76×10〈sup〉16〈/sup〉 Jones, an external quantum efficiency of (1.29×10〈sup〉6〈/sup〉)%, and a photoconductive gain as high as 12900. The 16-cells in this array show good uniformity. In this work the great application potential of gallium oxide deep ultraviolet detector array is illustrated from the perspective of optoelectronic performance and application prospect.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2022
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...