GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 61, No. 3 ( 2012), p. 036802-
    Abstract: Microcrystalline silicon thin films with and without a seed layer were deposited using very high frequency plasma enhanced chemical vapor deposition method at a high growth rate. The influence of the seed-layer method on the film growth and structure were investigated using spectroscopic ellipsometry(SE), Raman spectrum and X-ray diffraction. The results show that the seed-layer can not only increase the growth rate, but also promote crystalline nucleation at the initial growth stage. The deposition processes were monitored by real time spectroscopic ellipsometry(RTSE). The film was also measured by ex situ SE in the air. The differences between the RTSE and ex situ SE have been studied in testsing the microcrystalline silicon thin films. Results show that for the thin films the total thickness obtained by RTSE is smaller than that by ex situ SE, while for the thick films the measured total thicknesses by two methods are almost the same. However, the surface roughness thickness detected by RTSE is larger than that by ex situ SE. The reason for this is due to oxidation of the thin film exposed to the air which smoothed the film surface.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2012
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 59, No. 2 ( 2010), p. 1190-
    Abstract: Three sets of hydrogenated microcrystalline silicon (μc-Si:H) films for different deposition time were prepared by very high frequency-plasma enhanced chemical vapor deposition with different deposition rates. The surface roughness evolution of μc-Si:H has been investigated using spectroscopic ellipsometry. For films with the deposition rate of 0.08 nm/s and 0.24 nm/s, the surface roughness of films changes a little, and the growth exponent β is about 0.20. Similar β values ascribed to the adatoms have enough time to move to the site with lower energy under lower deposition rate. However, when the deposition rate increases to 0.66 nm/s, the surface roughness of films increases obviously, and the exponent β is about 0.81, which is much higher than 0.5 for zero diffusion limit in the scaling theory. The growth mode of high-rate deposited μc-Si:H is clearly different from that of lower-rate deposited μc-Si:H. This is due to the fact that the adatoms have no enough time to diffuse before being covered by the radicals of the next layer under high deposition rate, which decreases the surface diffusion of the adatom, and therefore increases the film surface roughening which results in a larger β. The case of β〉0.5 is related to the shadowing effect.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2010
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 64, No. 24 ( 2015), p. 248801-
    Abstract: Metal nanoparticles with low cost and high performance have good potential applications in light-trapping of solar cells. In this paper, a three-dimensional model is proposed to simulate the light absorption of microcrystalline silicon (μc-Si:H) thin film solar cells. The effects of spherical and hemispherical Al nanoparticle arrays located on the front surfaces of solar cells are investigated, and the particle radius and array period are optimized by the finite element method. The results show that the optimal Al nanoparticle arrays can enhance broadband absorption in thin film solar cells. For spherical particle arrays, the key parameter that influences light absorption in solar cells is period/radius ratio (P/R) or particle surface coverage. When P/R=4-5, the optimum integrated absorption enhancement (Eabs) is over 20% under AM1.5 illumination compared with the solar cell without nanoparticles. The value of Eabs is small and decreases with the increase of P/R when P/R〉5, and Eabs is less than zero when P/RP=500 nm and R=120 nm, the spectral absorption rate as a function of wavelength shows broadband absorption including four distinct peaks, which are attributed to quadrupole plasmon resonance mode, dipole resonance mode and waveguide mode respectively according to the electric field distribution in the solar cell. For hemispherical particle arrays, the maximum value of Eabs is 24.5%, which is higher than that of the solar cell with optimized spherical particle arrays. This is due to the high coupling efficiencies of the particles, so that most of the scattered light is directly coupled into the substrate. However, the value of Eabs is very sensitive to the hemispherical particle radius. As the radius decreases, the scattering cross-section and scattering efficiency of the particle decrease dramatically. As the radius increases, the dipole plasmon resonance wavelength rapidly shifts towards longer wavelength (red shift). Both of these are detrimental to absorption enhancement of solar cells. Thus we conclude that spherical Al particle arrays are more preferable in actually fabricating the light-trapping of solar cells.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2015
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 62, No. 19 ( 2013), p. 197301-
    Abstract: The intrinsic silicon thin film for passivation of the crystalline silicon wafer surfaces in silicon heterojunction cells was prepared by very high fregucency plasma enhanced CVD (VHF-PECVD). Plasma emission versus time was recorded by optical emission spectroscopy (OES) during the silicon thin film deposition. Results show that the Hα* and SiH* signals stabilize soon (about 25 s after deposition) under the optimized deposition conditions, and the variation of SiH*/Hα* ratio is little, thus avoiding the structure non-uniformity of silicon film during the growth. The reason is that the SiH4 back diffusion is avoided owing to SiH4 being not fully depleted. The study of the influence of the deposition parameters on steady-state plasma emission spectra and properties of silicon films shows that as the SiH4 concentration increases, the Hα* decreases and the SiH* increases, the silicon film will transit from microcrystalline to amorphous, and the good passivation effect can be achieved in the amorphous silicon film. Hα* and SiH* increase firstly and then decrease with the deposition pressure, the decrease of Hα* and SiH* under high pressure can be attributed to a high polymer formation which is not beneficial to the formation of high quality silicon film, and therefore the passivation effect of silicon films decreases under high pressures. Hα* and SiH* increase with power density, and are saturated when the power density is 150 mW/cm2; for this the quality and passivation effect of the silicon film begin to decrease, the passivation effect of the silicon film at a power density of 50 mW/cm2 is poor, which may be due to the low concentration of atomic H being unable to fully passivate the dangling bonds at the silicon surface.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2013
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 57, No. 8 ( 2008), p. 5176-
    Abstract: P-type hydrogenated microcrystalline silicon thin films have been prepared by radio-frequency plasma-enhanced chemical vapor deposition with B2H6 as a doping gas. The effects of substrate temperature and the doping ratio on the microstructure and dark conductivity of the p-type hydrogenated microcrystalline silicon films have been investigated. The results show that the films deposited at higher substrate temperature are amorphous even if the doping ratio is very low. The crystalline volume fraction of films monotonically decreases and the dark conductivity initially increases slowly and then decreases rapidly with substrate temperature increasing, which is very similar to the effects of the doping ratio. Finally the growth mechanism of p-type hydrogenated microcrystalline silicon thin films has been discussed in particular.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2008
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2007
    In:  Acta Physica Sinica Vol. 56, No. 7 ( 2007), p. 4122-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 56, No. 7 ( 2007), p. 4122-
    Abstract: Undoped hydrogenated silicon films have been prepared from a gas mixture of silane and hydrogen, at deposition temperature varying from 200—450℃ in an ultrahigh vacuum system using RFPECVD technique. Raman scattering, SEM and UV spectrophotometer are used to analyse the structure changes of microcrystalline silicon films throughout the deposition temperature range. Results show that at lower deposition temperature, the crystalline volume fraction of μc-Si:H films increased with the increasing of deposition temperature. Exceeding a certain temperature, the crystalline volume fraction decreased with further increasing of deposition temperature. This is attributed to a change in the dominant film growth process from surface-diffusion-limited at low deposition temperatures to flux-limited at higher deposition temperatures.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2007
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 66, No. 6 ( 2017), p. 067101-
    Abstract: Exploring new types of photocatalysts and modifying the photocatalytic activity have attracted more and more extensive attention in many research fields. Anatase TiO2, a promising photocatalyst widely studied, can only absorb the ultraviolet light and thus only make little use of the power in visible light. Therefore, it is an urgent task to make theoretical and experimental investigations on the photocatalytic mechanism in anatase TiO2 and then improve its visible light response so as to utilize more visible light. Now, in the present paper, we carry out a systematic theoretical investigation on modifying the photocatalytic properties of the anatase TiO2 (101) surface via doping transition metal neutral atoms such as Fe, Ni, Pd, Pt, Cu, Ag, and Au by using the plane wave ultrasoft pseudopotential method of the density functional theory. The dependence of the macroscopic catalytic activity on electronic structure and optoelectronic property is uncovered by making a comparative analysis of the geometric structures, the electronic structures, and the optical properties of the undoped and doped anatase TiO2 (101) surfaces. Our numerical results show that doping certain transition metals can suppress the band gap or induce extra impurity energy levels, which is beneficial to improving the visible light response of the TiO2 (101) surface in different ways. In most cases, the new impurity energy levels will appear in the original band gap, which comes from the contribution of the d electronic states in the transition metal atoms. Moreover, the photocatalytic activity of the TiO2 (101) surface can be changed differently by doping different transition metal atoms, which is closely dependent on the bandgap width, Fermi energy, the impurity energy level, and the electron configuration of the outermost shell of the dopants. This research should be an instructive reference for designing TiO2 (101) photocatalyst and improving its capability, and also helpful for understanding doping transition metal atoms in other materials.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2017
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2008
    In:  Acta Physica Sinica Vol. 57, No. 12 ( 2008), p. 7855-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 57, No. 12 ( 2008), p. 7855-
    Abstract: Single ZnO nanowire ultraviolet (UV) photodetector has been fabricated, and the enhancement of its UV photoresponse by polystyrene sulfate surface functionalization has been investigated. It is found that, under the same UV light irradiation, UV photoresponse of the detector with surface functionalization increases by three orders of magnitude as compared to that without surface coating. By comparing I-V characteristics of the detectors, we find that the dark conductance of the device can decrease by three orders of magnitude after surface coating while the light conductance shows little variation. The result demonstrates that one can readily enhance the UV photoresponse of the photodetector by surface functionalization.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2008
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 62, No. 24 ( 2013), p. 247801-
    Abstract: Light trapping is one of the key issues to improve the light absorption and increase the efficiency of thin film solar cell. In this paper, a novel combined light trapping structure consisting of back one-dimensional (1D) Ag nano-grating and front conformal antireflective coating is proposed for amorphous silicon (α-Si) thin film solar cell. By a numerical simulation based on the finite element method, the effect of the combination on the light absorption of α-Si solar cell is investigated, and the Ag nano-grating parameters are optimized. The results show that the combined light trapping structure can enhance broadband absorption in thin-film solar cell. For the α-Si solar cell with the combined structure at P=600 nm, H=90 nm, and W=180 nm, the integrated absorption is enhanced by 103% under AM1.5 illumination at normal incidence in a wavelength range of 300–800 nm, and the photon absorption rate is increased by 300% in a long-wavelength range of 650–750 nm compared with the reference cell. We discuss the physical mechanism of absorption enhancement in different wavelength ranges from the electrical field amplitude distributions in the solar cells. In addition, the solar cell with the combined structure is much less sensitive to the angle of incident light.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2013
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2009
    In:  Acta Physica Sinica Vol. 58, No. 6 ( 2009), p. 4123-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 58, No. 6 ( 2009), p. 4123-
    Abstract: The scaling behaviour of surface roughness evolution of high rate deposited μc-Si:H by very high frequency plasma-enhanced chemical vapor deposition (VHF-PECVD) is investigated using spectroscopic ellipsometry (SE). Films deposited at Pg=300 Pa with deposition rate of 5 ?/s, show abnormal scaling behavior with the exponent β of about 0.81, which is much larger than 0.5 of zero diffusion limit in the scaling theory. This implies that there are some roughening increasing mechanisms, and this roughening increasing mechanism is correlated with the shadowing effect.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2009
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...