GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 64, No. 6 ( 2015), p. 067304-
    Abstract: In order to design the power devices with the low loss required for the power integrated circuits (PIC), a new folded silicon LDMOS with the folding step oxide layer (SOFLDMOS) is proposed in this paper for the first time. In this structure, the step oxide layer is covered on the folded silicon surface with a periodic distribution. The surface electric field is optimized to be uniform by introducing a new electric field peak due to the electric field modulation effect by the step oxide layer. The breakdown voltage is improved to solve the breakdown voltage limitation problem in FALDMOS. Obtained in virtue of the ISE simulation are the results that the silicon limit is broken by applying the effects of the electric field modulation, accumulation of majority carriers, and conductive silicon region multiplier in the proposed SOFLDMOS. The saturation current of the drain electron is increased by about 3.4 times compared with that of the conventional LDMOS. When the breakdown voltage is 62 V, an ultra-low specific on-resistance of 0.74 mΩ·cm2 is obtained, which is far less than 2.0 mΩ·cm2 in the conventional LDMOS with the same breakdown voltage. The low loss requirements is achieved for the PIC with the low voltage region by the proposed SOFLDMOS.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2015
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 64, No. 23 ( 2015), p. 237302-
    Abstract: In this paper, experimental results are reported about the new Al0.25Ga0.75N/GaN high electron mobility transistor (HEMT) with a step AlGaN layer. The rule of 2DEG concentration variation with the thickness of AlGaN epitaxial layer has been applied to the new AlGaN/GaN HEMTs: The step AlGaN layer is formed at the gate edge by inductively coupled plasma etching, the 2DEG concentration in the etched region is much lower than the other parts of the device. A new electric field peak appears at the corner of the step AlGaN layer. The high electric field at the gate edge is decreased effectively due to the emergence of the new electric field peak, and this optimizes the surface electric field of the new AlGaN/GaN HEMTs. The new devices have the same threshold voltage and transconductance as the conventional structure, -1.5 V and 150 mS/mm. That means, the step AlGaN layer does not affect the forward characteristics of the AlGaN/GaN HEMTs. As the more uniform surface electric field distribution usually leads to a higher breakdown voltage (BV), with the same gate to drain length LGD=4 m, the BV can be improved by 58% for the proposed Al0.25Ga0.75N/GaN HEMTs as compared with the conventional structure. At VGS=1 V, the saturation currents (Isat) is 230 mA/mm for the conventional Al0.25Ga0.75N/GaN HEMT and 220 mA/mm for the partially etched Al0.25Ga0.75N/GaN HEMT (LEtch=4 m, LGD=4 m). The decrease of Isat is at most 10 mA/mm. However, as the BV has a significant enhancement of almost 40 V, these drawbacks are small enough to be acceptable. During the pulse I-V test, the current collapse quantity of the conventional structure is almost 40% of the maximum IDS(DC), but this quantity in the new devices is only about 10%, thus the current collapse effect in Al0.25Ga0.75N/GaN HEMTs has a significant remission for a step AlGaN layer. And as the high electric field peak at the gate edge is decreased, the effect of the gate electrode on electron injection caused by this electric field peak is also included. The injected electrons may increase the leakage current during the off-state, and these injected electrons would form the surface trapped charge as to decrease the 2DEG density at the gate. As a result, the output current and the transconductance would decrease due to the decreased electron density during the on-state. That means, with the region partially etched, the electron injection effect of the gate electrode would be remissed and the stability of Schottky gate electrode would be improved. In addition, due to the decrease of the high electric field at the gate edge, the degradation of the device, which is caused by the high electric field converse piezoelectric effect, will be restrained. The stability of the partially etched AlGaN/GaN HEMT will become better.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2015
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 73, No. 7 ( 2024), p. 078501-
    Abstract: Insulated gate bipolar transistor (IGBT) is the core of modern power semiconductor device, and has been widely used due to its excellent electrical characteristics. A novel majority carrier accumulation mode IGBT with Schottky junction contact gate semiconductor layer (AC-SCG IGBT) is proposed and investigated by TCAD simulation in this article. When the AC-SCG IGBT is in the on-state, a forward bias is applied to the gate. Due to the very low forward voltage drop ( 〈 i 〉 V 〈 /i 〉 〈 sub 〉 F 〈 /sub 〉 ) of the Schottky barrier diode, the potential of the gate semiconductor layer is almost equal to the gate potential, which can accumulate a large number of majority carrier electrons in the drift region. In addition to the electrons existing, these accumulated electrons increase the conductivity of the drift region, thus significantly reducing 〈 i 〉 V 〈 /i 〉 〈 sub 〉 F 〈 /sub 〉 . Therefore, the doping concentration of the drift region is not limited by 〈 i 〉 V 〈 /i 〉 〈 sub 〉 F 〈 /sub 〉 . The lightly doped drift region can make AC-SCG IGBT have a higher breakdown voltage (BV). Moreover, it also reduces the barrier capacitance in the turn-off process, thus the overall Miller capacitance is small, which can quickly turn off and reduce the turn-off time ( 〈 i 〉 T 〈 /i 〉 〈 sub 〉 off 〈 /sub 〉 ) and turn-off loss ( 〈 i 〉 E 〈 /i 〉 〈 sub 〉 off 〈 /sub 〉 ). The simulation results indicate that at the BV of 600 V, the 〈 i 〉 V 〈 /i 〉 〈 sub 〉 F 〈 /sub 〉 of 0.84 V for the proposed AC-SCG IGBT is reduced by 46.2% compared with that for the conventional IGBT ( 〈 i 〉 V 〈 /i 〉 〈 sub 〉 F 〈 /sub 〉 of 1.56 V). The 〈 i 〉 E 〈 /i 〉 〈 sub 〉 off 〈 /sub 〉 of the AC-SCG IGBT (0.77 mJ/cm 〈 sup 〉 2 〈 /sup 〉 ) is reduced by 52.5% compared with that for the conventional IGBT (1.62 mJ/cm 〈 sup 〉 2 〈 /sup 〉 ), and the 〈 i 〉 T 〈 /i 〉 〈 sub 〉 off 〈 /sub 〉 (155.8–222.7 ns) is reduced by 30%. The contradiction between 〈 i 〉 V 〈 /i 〉 〈 sub 〉 F 〈 /sub 〉 and 〈 i 〉 E 〈 /i 〉 〈 sub 〉 off 〈 /sub 〉 is eliminated. In addition, the proposed AC-SCG IGBT has a better anti-latch-up capability and is coupled with its higher BV, so it has a larger forward biased safe operating area (FBSOA). The proposed novel structure meets the development requirements for future IGBT device performance, and has great significance for guiding the development of the power semiconductor device field.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2024
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2024
    In:  Acta Physica Sinica Vol. 0, No. 0 ( 2024), p. 0-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 0, No. 0 ( 2024), p. 0-
    Abstract: Reverse-Conducting Lateral Insulated Gate Bipolar Transistor (RC-LIGBT) with freewheeling diode integrated in the body by introducing n 〈 sup 〉 + 〈 /sup 〉 anode can realize the reverse conduction and optimize the turn-off characteristics of the device, which is a promising device in power integrated circuits. In this paper, a novel RC-LIGBT with Electron-controlled Gate (EG) and Separated Short-Anode (SSA) is proposed and investigated by TCAD simulation, which can achieve low on-state voltage drop ( 〈 i 〉 V 〈 /i 〉 〈 sub 〉 on 〈 /sub 〉 ) and low turn-off loss ( 〈 i 〉 E 〈 /i 〉 〈 sub 〉 off 〈 /sub 〉 ) at the same time. The EG structure of p-n-n 〈 sup 〉 + 〈 /sup 〉 -p (p 〈 sup 〉 + 〈 /sup 〉 region/ n-type silicon region/n-type barrier layer/p 〈 sup 〉 + 〈 /sup 〉 region) is adopted, the gate and anode electrodes are connected by the EG structure. In the forward conduction state, a high-density electron accumulation layer is formed on the surface of the drift region by EG structure, which greatly reduces the 〈 i 〉 V 〈 /i 〉 〈 sub 〉 on 〈 /sub 〉 of the device. At the same time, the use of the SSA structure can also optimize the 〈 i 〉 E 〈 /i 〉 〈 sub 〉 off 〈 /sub 〉 of the device by forming an additional electron extraction channel. In addition, based on the EG structure, a low-doping p-drift can be combined with the SSA structure to simply achieve reverse-conduction and snapback-free characteristics. What's more, the EG structure and the SSA structure can complement each other. On the one hand, the high-density electron accumulation layer formed by EG structure compensates for the weakened conductance modulation effect caused by the SSA structure. On the other hand, the electron extraction channel of the SSA structure enables a large number of accumulated electrons to be removed quickly. The simulation results show that the proposed device has an excellent tradeoff relationship between 〈 i 〉 V 〈 /i 〉 〈 sub 〉 on 〈 /sub 〉 and 〈 i 〉 E 〈 /i 〉 〈 sub 〉 off 〈 /sub 〉 , the 〈 i 〉 V 〈 /i 〉 〈 sub 〉 on 〈 /sub 〉 is 1.16V, which is 55% lower than that of SSA LIGBT, and the 〈 i 〉 E 〈 /i 〉 〈 sub 〉 off 〈 /sub 〉 is 0.099mJ/cm 〈 sup 〉 2 〈 /sup 〉 , which is 38.5% and 94.7% lower than that of SSA LIGBT and conventional LIGBT, respectively.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2024
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 70, No. 14 ( 2021), p. 148501-
    Abstract: With the rapid development of the traditional inorganic semiconductor industry, the improvement of its electrical performance is gradually approaching to the limit. It is difficult to continue to improve the performance, lessen the size, and reduce the cost. Therefore, organic semiconductor materials and devices with simple process and low cost have been found and gradually become a new research hotspot. Although organic semiconductor materials and devices are developing rapidly, their electrical properties, such as carrier mobility, are considerably inferior to those of inorganic semiconductors, and their research direction and application prospect are relatively fixed and single. They are developed only in display, sensing, photoelectric conversion and other fields, but the researches on switching power devices, integrated circuits and other fields are still relatively blank. At the same time, power devices are used only in the field of inorganic semiconductors. Therefore, in order to expand the research direction of organic semiconductors and power devices at the same time, a novelsilicon on insulator lateral double-diffused metal oxide semiconductor (SOI LDMOS)power device is reported in this paper. Unlike the SOI LDMOS power devices in traditional inorganic semiconductors, this novel device can be used in the field of organic semiconductors by combining with insulated flexible substrates, which provides a new possibility for the research direction of organic semiconductors. In this paper, both simulation and experiment verify that specific on-resistance (〈i〉R〈/i〉〈sub〉ON,sp〈/sub〉) and threshold voltage (〈i〉V〈/i〉〈sub〉TH〈/sub〉) do not change significantly when the conventional SOI LDMOS lacks the substrate electrode, but the breakdown voltage decreases by about 15% due to the absence of the substrate electrode or the longitudinal electric field. In response to this phenomenon, in this paper proposed is a novel SOI LDMOS power device that possesses surface substrate electrodes and drift zone oxide trenches. This novel device can provide electrodes for the substrate again, optimize the horizontal and vertical electric field, and significantly change neither of the 〈i〉R〈/i〉〈sub〉ON,sp〈/sub〉 and the 〈i〉V〈/i〉〈sub〉TH〈/sub〉. At the same time, the breakdown voltage (BV) of conventional SOI LDMOS is increased by 57.54%, which alleviates the adverse effects caused by the application in the field of organic semiconductors. This novel SOI LDMOS power device provides the possibility of applying traditional power semiconductors to the research of organic semiconductors, and has innovative significance for expanding the organic semiconductor research.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2021
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 64, No. 16 ( 2015), p. 167304-
    Abstract: In order to design the lateral double-diffused metal-oxide-semiconductor field-effect transistor (LDMOS) with low loss required for a power integrated circuit, a new super junction LDMOS with the P covered layer which is based on the existing N buffered super junction LDMOS is proposed in this paper for the first time. The key feature of the proposed structure is that the P-type covered layer is partly above the N-type of the super junction layer, which is different from the N buffered super junction LDMOS. In this structure, the specific on-resistance of the device is reduced by using the high doped super junction layer; the problem of the substrate-assisted depletion which is produced due to the P-type substrate of the N-channel super junction LDMOS is eliminated by completely compensating for the charges of the N-type buffered layer and the P-type covered layer, thus improving the breakdown voltage. The charges of the N-type and P-type pillars are depleted completely. A new transmission path at the on-state is formed by N buffered layer to reduce the specific on-resistance, which is similar to the N buffered super junction LDMOS. However, the effect of N-type buffered layer of N buffered super junction LDMOS is not fully used. The drift region of the device is further optimized by the proposed device to reduce the specific on-resistance. The charge concentration of the N-type buffered layer in the proposed device is improved by the effect of charge compensation of the P covered layer. It is clear that high breakdown voltage and low specific on-resistance are realized in the proposed device by introducing the P-type covered layer and the N-type buffered layer. The results of the 3 D-ISE software suggest that when the drift region is on a scale of 10 μm, a specific on-resistance of 4.26 mΩ·cm2 obtained from P covered super junction LDMOS by introducing P covered layer and N buffered layer is reduced by about 59% compared with that of conventional super junction LDMOS which is 10.47 mΩ·cm2, and reduced by about 43% compared with that of N Buffered super junction LDMOS which is 7.46 mΩ·cm2.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2015
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 61, No. 19 ( 2012), p. 197901-
    Abstract: The blind holes processing experiment is conducted on the silicon under the radiation of a 355 nm nanosecond UV repetitive pulse laser. With the increase of the laser pulse number, the variations of the silicon morphology,the depth and aperture of the blind holes are observed, and the thermodynamic process of UV laser irradiating silicon is analyzed. The results show that the formation of the blind silicon hole in the laser ablation process is due to the interaction between thermal effect and force effect. Thermal effect results in fusion, vaporization and even producing laser plasma by ionization in silicon, which is essential to the removal of the material. The molten material is compressed by the plasma shock wave and the expansion of the high-temperature gaseous material,and then ejection outward, which will benefit the further ablation; the force propagates along the laser transmission direction,perpendicular to the silicon surface, so the removal parts are distributed mainly along the depth direction of the hole, reaching a high aperture ratio, which is up to 8:1 in our experiments. In addition, the laser-induced plasma also prevents the effect of laser on the target surface, and with the increase of hole depth, laser defocusing occurs. The two aspects finally restrict the ablation depth. The results shows that in the process of laser irradiation on the material, the ablation efficiency is much higher when the former 100 pulses arrived than the sequent laser pulses.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2012
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...