GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of the Acoustical Society of America 141 (2017): 4179–4187, doi: 10.1121/1.4983663.
    Description: Harbor porpoises (Phocoena phocoena) use narrow band echolocation signals for detecting and locating prey and for spatial orientation. In this study, acoustic impedance values of tissues in the porpoise's head were calculated from computer tomography (CT) scan and the corresponding Hounsfield Units. A two-dimensional finite element model of the acoustic impedance was constructed based on CT scan data to simulate the acoustic propagation through the animal's head. The far field transmission beam pattern in the vertical plane and the waveforms of the receiving points around the forehead were compared with prior measurement results, the simulation results were qualitatively consistent with the measurement results. The role of the main structures in the head such as the air sacs, melon and skull in the acoustic propagation was investigated. The results showed that air sacs and skull are the major components to form the vertical beam. Additionally, both beam patterns and sound pressure of the sound waves through four positions deep inside the melon were demonstrated to show the role of the melon in the biosonar sound propagation processes in the vertical plane.
    Description: This work was financially supported in part by the National Science Foundation of China (Grant Nos. 41276040, 11174240, 31170501, and 31070347), the Natural Science Foundation of Fujian Province of China (Grant No. 2012J06010), Ministry of Science and Technology of China (Grant No. 2011BAG07B05-3) and State Oceanic Administration of China (Grant No. 201105011-3). The Project was sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of the Acoustical Society of America 143 (2018): 2611–2620, doi: 10.1121/1.5034464.
    Description: Bottlenose dolphins project broadband echolocation signals for detecting and locating prey and predators, and for spatial orientation. There are many unknowns concerning the specifics of biosonar signal production and propagation in the head of dolphins and this manuscript represents an effort to address this topic. A two-dimensional finite element model was constructed using high resolution CT scan data. The model simulated the acoustic processes in the vertical plane of the biosonar signal emitted from the phonic lips and propagated into the water through the animal's head. The acoustic field on the animal's forehead and the farfield transmission beam pattern of the echolocating dolphin were determined. The simulation results and prior acoustic measurements were qualitatively extremely consistent. The role of the main structures on the sound propagation pathway such as the air sacs, melon, and connective tissue was investigated. Furthermore, an investigation of the driving force at the phonic lips for dolphins that emit broadband echolocation signals and porpoises that emit narrowband echolocation signals suggested that the driving force is different for the two types of biosonar. Finally, the results provide a visual understanding of the sound transmission in dolphin's biosonar.
    Description: This work was financially supported in part by the National Science Foundation of China (Grant Nos. 41276040, 11174240, 31170501, and 31070347), the Natural Science Foundation of Fujian Province of China (Grant No. 2012J06010), Ministry of Science and Technology of China (Grant No. 2011BAG07B05-3) and State Oceanic Administration of China (Grant No. 201105011-3). The role of the Office of Naval Research in supporting W.W.L.A. is also acknowledged.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-27
    Description: Author Posting. © Acoustical Society of America, 2021. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 150(1), (2021): 225–232, https://doi.org/10.1121/10.0005518.
    Description: The sound-transmission, beam-formation, and sound-reception processes of a short-finned pilot whale (Globicephala macrorhynchus) were investigated using computed tomography (CT) scanning and numerical simulation. The results showed that sound propagations in the forehead were modulated by the upper jaw, air components, and soft tissues, which attributed to the beam formation in the external acoustic field. These structures owned different acoustic impedance and formed a multiphasic sound transmission system that can modulate sounds into a beam. The reception pathways composed of the solid mandible and acoustic fats in the lower head conducted sounds into the tympano-periotic complex. In the simulations, sounds were emitted in the forehead transmission system and propagated into water to interrogate a steel cylinder. The resulting echoes can be interpreted from multiple perspectives, including amplitude, waveform, and spectrum, to obtain the acoustic cues of the steel cylinder. By taking the short-finned pilot whale as an example, this study provides meaningful information to further deepen our understanding of biosonar system operations, and may expand sound-reception theory in odontocetes.
    Description: This work was financially supported by the project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFC1407505, 2018YFC1407504, 2016YFC0300802, and 2018YFC0308602), the National Natural Science Foundation of China (Grant Nos. 12074323 and 41422604), the Special Fund for Marine and Fishery Development of Xiamen (Grant No. 20CZB015HJ01), Water Conservancy Science and Technology Innovation Project of Guangdong (Grant No. 2020-16), the China Postdoctoral Science Foundation (Grant No. 2020M682086), and the China National Postdoctoral Program for Innovative Talents (Grant No. BX2021168).
    Description: 2022-01-12
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-27
    Description: Author Posting. © Acoustical Society of America, 2021. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 150(5),(2021): 3288–3301, https://doi.org/10.1121/10.0006973.
    Description: Snapping shrimps are pervasive generators of underwater sound in temperate and tropical coastal seas across oceans of the world. Shrimp snaps can act as signals to conspecifics and provide acoustic information to other species and even to humans for habitat monitoring. Despite this, there are few controlled measurements of the acoustic parameters of these abundant acoustic stimuli. Here, the characteristics of snaps produced by 35 individuals of two species, Alpheus heterochaelis and Alpheus angulosus, are examined to evaluate the variability within and between the species. Animals were collected from the wild and the sound pressure and particle acceleration were measured at 0.2, 0.5, and 1 m from individual shrimp in controlled laboratory conditions to address the snap properties at communication-relevant distances. The source and sound exposure levels (at 1 m) were not significantly different between these two species. The frequency spectra were broadband with peak frequencies consistently below 10 kHz. The particle acceleration, the sound component likely detectable by shrimp, was measured across three axes. The directional amplitude variation suggests that the particle motion of snaps could act as a localization cue. The amplitudes of the snap pressure and acceleration decreased with distance, yet the levels remained sufficient for the predicted detection range by nearby conspecifics.
    Description: This research was funded by the National Science Foundation Biological Oceanography Award No. 15-36782, the Defense Advanced Research Projects Agency, and the Woods Hole Oceanographic Institution.
    Description: 2022-05-03
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...