GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-02-06
    Description: Highlights • We review the knowledge on modern high-latitude planktic foraminifers. • Subpolar species currently invade higher latitudes. • Climate change affects phenology, seawater pH, and carbon turnover. • Modern planktic foraminifers are briefly discussed for their paleoceanographic significance. Abstract Planktic foraminifers can be sensitive indicators of the changing environment including both the Arctic Ocean and Southern Ocean. Due to variability in their ecology, biology, test characteristics, and fossil preservation in marine sediments, they serve as valuable archives in paleoceanography and climate geochemistry over the geologic time scale. Foraminifers are sensitive to, and can therefore provide proxy data on ambient water temperature, salinity, carbonate chemistry, and trophic conditions through shifts in assemblage (species) composition and the shell chemistry of individual specimens. Production and dissolution of the calcareous shell, as well as growth and remineralization of the cytoplasm, affect the carbonate counter pump and to a lesser extent the soft-tissue pump, at varying regional and temporal scales. Diversity of planktic foraminifers in polar waters is low in comparison to lower latitudes and is limited to three native species: Neogloboquadrina pachyderma, Turborotalita quinqueloba, and Globigerina bulloides, of which N. pachyderma is best adapted to polar conditions in the surface ocean. Neogloboquadrina pachyderma hibernates in brine channels in the lower layers of the Antarctic sea ice, a strategy that is presently undescribed in the Arctic. In open Antarctic and Arctic surface waters T. quinqueloba and G. bulloides increase in abundance at lower polar to subpolar latitudes and Globigerinita uvula, Turborotalita humilis, Globigerinita glutinata, Globorotalia inflata, and Globorotalia crassaformis complement the assemblages. Over the past two to three decades there has been a marked increase in the abundance of Orcadia riedeli and G. uvula in the subpolar and polar Indian Ocean, as well as in the northern North Atlantic. This paper presents a review of the knowledge of polar and subpolar planktic foraminifers. Particular emphasis is placed on the response of foraminifers to modern warming and ocean acidification at high latitudes and the implications for data interpretation in paleoceanography and paleoclimate research.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-19
    Description: Information on current diversity and biogeography of Arctic marine microbes (bacteria, archaea and single cell eukaryotes) with adequate temporal, spatial and taxonomic resolution is urgently needed to better understand natural dynamics of ecosystem states in space and time, and consequences of environmental change by anthropogenic factors. Here, we introduce a standardized molecular-based observation strategy for high resolution assessment of marine microbes in space and time, even in remote areas such as the Arctic Ocean. The observation strategy involves molecular analyses such as Next Generation Sequencing (NGS) and quantitative polymerase chain reaction (qPCR) of diverse environmental samples, collected from sea ice, water column and seafloor with a complementary set of automated and ship-based sampling approaches. This includes newly developed automated under-way sampling, moored sediment traps and year-round water samplers, as well as CTD-casts, multi-corers, bottom landers and in the future seafloor crawlers. An integrated standardized dataset including linked, searchable information on synchronous environmental variables provides comprehensive information on the diversity, abundance and biogeography of Arctic marine microbes, covering all three domains of life. The development of the observation strategy involves a set of coordinated pilot studies testing questions of temporal and spatial resolution, i.e. to assess the impact of sea-ice on Arctic marine single-cell eukaroyte community composition, or of ocean warming in Eastern Fram Strait since the year 2000. In the future, the observation strategy for Arctic marine microbes will be implemented as a distributed Molecular Microbial Observatory in the framework of the Arctic observatory FRAM (Frontiers in Arctic Monitoring) and contributes to the ATLANTOS strategy for an integrated Atlantic observatory including genomic information.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...