GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ASME International  (4)
  • 1
    In: Journal of Biomechanical Engineering, ASME International, Vol. 143, No. 9 ( 2021-09-01)
    Abstract: Intracoronary thrombus from plaque erosion could cause fatal acute coronary syndrome (ACS). A conservative antithrombotic therapy has been proposed to treat ACS patients in lieu of stenting. It is speculated that the residual thrombus after aspiration thrombectomy would influence the prognosis of this treatment. However, biomechanical mechanisms affecting intracoronary thrombus remodeling and clinical outcome remain largely unknown. in vivo optical coherence tomography (OCT) data of a coronary plaque with two residual thrombi after antithrombotic therapy were acquired from an ACS patient with consent obtained. Three OCT-based fluid–structure interaction (FSI) models with different thrombus volumes, fluid-only, and structure-only models were constructed to simulate and compare the biomechanical interplay among blood flow, residual thrombus, and vessel wall mimicking different clinical situations. Our results showed that residual thrombus would decrease coronary volumetric flow rate by 9.3%, but elevate wall shear stress (WSS) by 29.4% and 75.5% at thrombi 1 and 2, respectively. WSS variations in a cardiac cycle from structure-only model were 12.1% and 13.5% higher at the two thrombus surfaces than those from FSI model. Intracoronary thrombi were subjected to compressive forces indicated by negative thrombus stress. Tandem intracoronary thrombus might influence coronary hemodynamics and solid mechanics differently. Computational modeling could be used to quantify biomechanical conditions under which patients could receive patient-specific treatment plan with optimized outcome after antithrombotic therapy. More patient studies with follow-up data are needed to continue the investigation and better understand mechanisms governing thrombus remodeling process.
    Type of Medium: Online Resource
    ISSN: 0148-0731 , 1528-8951
    Language: English
    Publisher: ASME International
    Publication Date: 2021
    SSG: 31
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Biomechanical Engineering, ASME International, Vol. 140, No. 4 ( 2018-04-01)
    Abstract: Accurate cap thickness and stress/strain quantifications are of fundamental importance for vulnerable plaque research. Virtual histology intravascular ultrasound (VH-IVUS) sets cap thickness to zero when cap is under resolution limit and IVUS does not see it. An innovative modeling approach combining IVUS and optical coherence tomography (OCT) is introduced for cap thickness quantification and more accurate cap stress/strain calculations. In vivo IVUS and OCT coronary plaque data were acquired with informed consent obtained. IVUS and OCT images were merged to form the IVUS + OCT data set, with biplane angiography providing three-dimensional (3D) vessel curvature. For components where VH-IVUS set zero cap thickness (i.e., no cap), a cap was added with minimum cap thickness set as 50 and 180 μm to generate IVUS50 and IVUS180 data sets for model construction, respectively. 3D fluid–structure interaction (FSI) models based on IVUS + OCT, IVUS50, and IVUS180 data sets were constructed to investigate cap thickness impact on stress/strain calculations. Compared to IVUS + OCT, IVUS50 underestimated mean cap thickness (27 slices) by 34.5%, overestimated mean cap stress by 45.8%, (96.4 versus 66.1 kPa). IVUS50 maximum cap stress was 59.2% higher than that from IVUS + OCT model (564.2 versus 354.5 kPa). Differences between IVUS and IVUS + OCT models for cap strain and flow shear stress (FSS) were modest (cap strain 〈 12%; FSS 〈 6%). IVUS + OCT data and models could provide more accurate cap thickness and stress/strain calculations which will serve as basis for further plaque investigations.
    Type of Medium: Online Resource
    ISSN: 0148-0731 , 1528-8951
    Language: English
    Publisher: ASME International
    Publication Date: 2018
    SSG: 31
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Biomechanical Engineering, ASME International, Vol. 141, No. 9 ( 2019-09-01)
    Abstract: Medical image resolution has been a serious limitation in plaque progression research. A modeling approach combining intravascular ultrasound (IVUS) and optical coherence tomography (OCT) was introduced and patient follow-up IVUS and OCT data were acquired to construct three-dimensional (3D) coronary models for plaque progression investigations. Baseline and follow-up in vivo IVUS and OCT coronary plaque data were acquired from one patient with 105 matched slices selected for model construction. 3D fluid–structure interaction (FSI) models based on IVUS and OCT data (denoted as IVUS + OCT model) were constructed to obtain stress/strain and wall shear stress (WSS) for plaque progression prediction. IVUS-based IVUS50 and IVUS200 models were constructed for comparison with cap thickness set as 50 and 200 μm, respectively. Lumen area increase (LAI), plaque area increase (PAI), and plaque burden increase (PBI) were chosen to measure plaque progression. The least squares support vector machine (LS-SVM) method was employed for plaque progression prediction using 19 risk factors. For IVUS + OCT model with LAI, PAI, and PBI, the best single predictor was plaque strain, local plaque stress, and minimal cap thickness, with prediction accuracy as 0.766, 0.838, and 0.890, respectively; the prediction accuracy using best combinations of 19 factors was 0.911, 0.881, and 0.905, respectively. Compared to IVUS + OCT model, IVUS50, and IVUS200 models had errors ranging from 1% to 66.5% in quantifying cap thickness, stress, strain and prediction accuracies. WSS showed relatively lower prediction accuracy compared to other predictors in all nine prediction studies.
    Type of Medium: Online Resource
    ISSN: 0148-0731 , 1528-8951
    Language: English
    Publisher: ASME International
    Publication Date: 2019
    SSG: 31
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Biomechanical Engineering, ASME International, Vol. 139, No. 1 ( 2017-01-01)
    Abstract: Accurate stress and strain calculations are important for plaque progression and vulnerability assessment. Models based on in vivo data often need to form geometries with zero-stress/strain conditions. The goal of this paper is to use IVUS-based near-idealized geometries and introduce a three-step model construction process to include residual stress, axial shrinkage, and circumferential shrinkage and investigate their impacts on stress and strain calculations. In Vivo intravascular ultrasound (IVUS) data of human coronary were acquired for model construction. In Vivo IVUS movie data were acquired and used to determine patient-specific material parameter values. A three-step modeling procedure was used to make our model: (a) wrap the zero-stress vessel sector to obtain the residual stress; (b) stretch the vessel axially to its length in vivo; and (c) pressurize the vessel to recover its in vivo geometry. Eight models were constructed for our investigation. Wrapping led to reduced lumen and cap stress and increased out boundary stress. The model with axial stretch, circumferential shrink, but no wrapping overestimated lumen and cap stress by 182% and 448%, respectively. The model with wrapping, circumferential shrink, but no axial stretch predicted average lumen stress and cap stress as 0.76 kPa and −15 kPa. The same model with 10% axial stretch had 42.53 kPa lumen stress and 29.0 kPa cap stress, respectively. Skipping circumferential shrinkage leads to overexpansion of the vessel and incorrect stress/strain calculations. Vessel stiffness increase (100%) leads to 75% lumen stress increase and 102% cap stress increase.
    Type of Medium: Online Resource
    ISSN: 0148-0731 , 1528-8951
    Language: English
    Publisher: ASME International
    Publication Date: 2017
    SSG: 31
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...