GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Society of Agronomy
    In:  Journal of Environment Quality, 30 (5). pp. 1738-1746.
    Publication Date: 2020-07-24
    Description: This paper describes the results of an export coefficient modeling approach to predict total phosphorus (TP) loading in the Frome catchment, Dorset, UK from point and diffuse sources on a seasonal (monthly) basis in 1998 and on an annual basis for 1990–1998. The model predicted an annual TP load of 25605 kg yr−1, compared with an observed (measured) value of 23400 kg yr−1 Monthly loads calculated using the export coefficient model agreed well with monthly observed values except in months of variable discharge, when observed values were low, probably due to infrequent, and therefore unrepresentative, sampling. Comparison between filterable reactive phosphorus (FRP) and TP concentrations observed in the period 1990–1997 showed that trends in FRP could be estimated from trends in TP. A sensitivity analysis (varying individual export coefficients by ±10%) showed that sewage treatment works (STWs) (3.5%), tilled land (2.7%), meadow–verge–seminatural (1.0%), and mown and grazed turf (0.6%) had the most significant effect (percent difference from base contribution) on model prediction. The model was also used to estimate the effect of phosphorus stripping at STWs in order to comply with a pending change in the European Union wastewater directive. Theoretical reduction of TP from the largest STW in the catchment gave a predicted reduction in TP loading of 2174 kg yr−1 This illustrates the value of this seasonal export coefficient model as a practical management tool.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: The photosynthetic and diazotrophic cyanobacterium Trichodesmium is a key contributor to marine biogeochemical cycles in the subtropical-oligotrophic oceans. Trichodesmium form colonies that harbor a distinct microbial community in comparison to the surrounding seawater. The presence of their associated bacteria can expand Trichodesmium ’s functional potential and is predicted to influence the cycling of carbon, nitrogen, phosphorus, and iron (C, N, P, and Fe). To link the bacteria associated with Trichodesmium to key functional traits and elucidate how community structure can influence nutrient cycling, we characterized Red Sea Trichodesmium colonies using metagenomics and metaproteomics. Colonies harbored bacteria that typically associate with algae and particles, such as the ubiquitous Alteromonas macleodii, but also lineages specific to Trichodesmium , such as members from the order Balneolales. The majority of associated bacteria were auxotrophic for different vitamins, indicating their dependency on vitamin production by Trichodesmium . The associated bacteria carry functional traits including siderophore biosynthesis, reduced phosphorus metabolism, and denitrification pathways. The analysis supports Trichodesmium as an active hotspot for C, N, P, Fe, and vitamin exchange. In turn, Trichodesmium may rely on associated bacteria to meet its high Fe demand as several lineages synthesize photolabile siderophores (e.g., vibrioferrin, rhizoferrin, petrobactin) which can enhance the bioavailability of particulate Fe to the entire consortium. Collectively, the results indicate that Trichodesmium colonies provide a structure where these interactions can take place. While further studies are required to clarify the exact nature of these interactions, Trichodesmium ’s reliance on particle and algae-associated bacteria and the observed redundancy of key functional traits likely underpins the resilience of Trichodesmium within an ever-changing global environment. IMPORTANCE Colonies of the cyanobacteria Trichodesmium act as a biological hotspot for the usage and recycling of key resources such as C, N, P, and Fe within an otherwise oligotrophic environment. While Trichodesmium colonies are known to interact and support a unique community of algae and particle-associated microbes, our understanding of the taxa that populate these colonies and the gene functions they encode is still limited. Characterizing the taxa and adaptive strategies that influence consortium physiology and its concomitant biogeochemistry is critical in a future ocean predicted to have increasingly resource-depleted regions. Colonies of the cyanobacteria Trichodesmium act as a biological hotspot for the usage and recycling of key resources such as C, N, P, and Fe within an otherwise oligotrophic environment. While Trichodesmium colonies are known to interact and support a unique community of algae and particle-associated microbes, our understanding of the taxa that populate these colonies and the gene functions they encode is still limited. Characterizing the taxa and adaptive strategies that influence consortium physiology and its concomitant biogeochemistry is critical in a future ocean predicted to have increasingly resource-depleted regions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Format: other
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...