GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • ASLO (Association for the Sciences of Limnology and Oceanography)  (1)
  • GEOMAR Helmholtz Centre for Ocean Research Kiel  (1)
  • 1
    facet.materialart.
    Unbekannt
    GEOMAR Helmholtz Centre for Ocean Research Kiel
    In:  Alkor-Berichte, AL561 . GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany, 34 pp.
    Publikationsdatum: 2021-11-23
    Beschreibung: The AL561 cruise was conducted in the framework of the project APOC (“Anthropogenic impacts on Particulate Organic Carbon cycling in the North Sea”). This collaborative project between GEOMAR, AWI, HEREON, UHH, and BUND is to understand how particulate organic carbon (POC) cycling contributes to carbon sequestration in the North Sea and how this ecosystem service is compromised and interlinked with global change and a range of human pressures include fisheries (pelagic fisheries, bottom trawling), resource extraction (sand mining), sediment management (dredging and disposal of dredged sediments) and eutrophication. The main aim of the sampling activity during AL561 cruise was to recover undisturbed sediment from high accumulation sites in the Skagerrak/Kattegat and to subsample sediment/porewater at high resolution in order to investigate sedimentation transport processes, origin of sediment/POC and mineralization processes over the last 100- 200 years. Moreover, the actual processes of sedimentation and POC degradation in the water column and benthic layer will be addressed by sampling with CTD and Lander devices. In total 9 hydroacoustic surveys (59 profiles), 4 Gravity Corer, 7 Multicorer, 3 Lander and 4 CTD stations were successfully conducted during the AL561 cruise.
    Materialart: Report , NonPeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2024-05-02
    Beschreibung: Bacterial sulfate reduction (SR) is often determined by radiotracer techniques using 35S‐labeled sulfate. In environments featuring simultaneous sulfide oxidation, SR can be underestimated due to re‐oxidation of 35S‐sulfide. Recycling of 35S‐tracer is expected to be high in sediment with low concentrations of pore‐water sulfide and high abundance of giant filamentous sulfur‐oxidizing bacteria (GFSOB). Here, we applied a sulfide‐spiking method, originally developed for water samples, to sediments along a shelf‐slope transect (72, 128, 243, 752 m water depth) traversing the Peruvian oxygen minimum zone. Sediment spiked with unlabeled sulfide prior to 35S‐sulfate injection to prevent radiotracer recycling was compared to unspiked sediment. At stations characterized by low natural sulfide and abundant GFSOB (128 and 243 m), the method revealed 1–3 times higher SR rates in spiked sediment. Spiking had no effect on SR in sediment with high natural sulfide despite presence of GFSOB (72 m). Bioturbated sediment devoid of GFSOB (752 m) showed elevated SR in spiked samples, likely from artificial introduction of sulfidic conditions. Sulfide oxidation rates at the 128 and 243 m station, derived from the difference in SR between spiked and unspiked sediment, approximated rates of dissimilatory nitrate reduction to ammonium by GFSOB. Gross SR contributed considerably to benthic dissolved inorganic carbon fluxes at the three shallowest station, confirming that SR is an important process for benthic carbon respirations within the oxygen minimum zone. We recommend to further explore the spiking method to capture SR in sediment featuring low sulfide concentrations and high sulfur cycling by GFSOB.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...