GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PANGAEA  (62)
  • Elsevier  (9)
  • Kiel  (4)
  • Springer  (2)
  • ASLO (Association for the Sciences of Limnology and Oceanography)  (1)
  • Gustav Fischer Verlag  (1)
Document type
Keywords
Language
  • 1
    Keywords: Hochschulschrift ; Sargassosee ; Coccolithophoridae ; Verkalkung
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (97 Seiten = 5 MB) , Illustrationen, Graphen
    Edition: Online-Ausgabe 2021
    Language: German
    Note: Zusammenfassung in deutscher und englischer Sprache
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Hochschulschrift ; Zooplankton ; Verkalkung
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (72 Seiten = 10 MB) , Illustrationen, Graphen
    Edition: 2021
    Language: English
    Note: Zusammenfassung in deutscher und englischer Sprache
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Hochschulschrift
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (115 Seiten = 5 MB) , Illustrationen, Graphen, Karte
    Edition: Online-Ausgabe 2023
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: Hochschulschrift ; Aufsatzsammlung ; Meeresströmung
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (303 Seiten = 19 MB) , Illustrationen, Graphen, Karten
    Edition: Online-Ausgabe
    DDC: 577.714
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Elsevier
    In:  Journal of Marine Systems, 30 . pp. 241-261.
    Publication Date: 2017-07-12
    Description: Taxon-specific microzooplankton dynamics were studied along a transect through the North Atlantic Drift from 70°N 04°E to 40°N 20°W during July 1997 using serial dilution and nutrient-enrichment experiments. Nutrient concentrations and microzooplankton composition indicated postbloom conditions at 40°N, 47°N, and 50°N, a transitional system at 54°N, and bloom conditions at 62°N and 70°N. The ratio of microzooplankton to phytoplankton biomass was inversely related to nitrate and phosphate concentrations. Potential grazing thresholds were observed in four of nine experiments at 40–66% of the initial phytoplankton concentration. Grazing losses were determined for six pigment-specific classes of phytoplankton. Selective grazing losses of phytoplankton taxa ranged from 73% to 248% of the nonselective grazing losses predicted according to their biomass contributions. The grazing selectivity varied considerably between communities, with the microherbivores showing positive selection for cyanobacteria and dinoflagellates and predominantly avoidance of chlorophyta and bacillariophyceae. Microzooplankton did not show a preference for the dominant phytoplankton taxa, but grazed preferentially on fast-growing phytoplankton with minor contributions (〈15%) to the phytoplankton biomass. However, bacillariophyceae were the major contributors to phytoplankton biomass and accounted for major fractions of the total losses through microzooplankton grazing. Microzooplankton consumed the equivalent of 0.12–5.5 times their own biomass daily on a carbon basis, amounting to 65–197% of gross phytoplankton production. With the conservative assumption that 20% of the consumed phytoplankton was converted to microzooplankton biomass, the latter was estimated to contribute 27–381% to the net production of the entire microzooplankton community. We therefore conclude that the taxonomic structure and the net production of the microzooplankton communities were significantly affected by the intensity and selectivity of herbivorous microzooplankton grazing.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-23
    Description: Pelagic processes and their relation to vertical flux have been studied in the Norwegian and Greenland Seas since 1986. Results of long-term sediment trap deployments and adjoining process studies are presented, and the underlying methodological and conceptional background is discussed. Recent extension of these investigations at the Barents Sea continental slope are also presented. With similar conditions of input irradiation and nutrient conditions, the Norwegian and Greenland Seas exhibit comparable mean annual rates of new and total production. Major differences can be found between these regions, however, in the hydrographic conditions constraining primary production and in the composition and seasonal development of the plankton. This is reflected in differences in the temporal patterns of vertical particle flux in relation to new production in the euphotic zone, the composition of particles exported and in different processes leading to their modification in the mid-water layers. In the Norwegian Sea heavy grazing pressure during early spring retards the accumulation of phytoplankton stocks and thus a mass sedimentation of diatoms that is often associated with spring blooms. This, in conjunction with the further seasonal development of zooplankton populations, serves to delay the annual peak in sedimentation to summer or autumn. Carbonate sedimentation in the Norwegian Sea, however, is significantly higher than in the Greenland Sea, where physical factors exert a greater control on phytoplankton development and the sedimentation of opal is of greater importance. In addition to these comparative long-term studies a case study has been carried out at the continental slope of the Barents Sea, where an emphasis was laid on the influence of resuspension and across-slope lateral transport with an analysis of suspended and sedimented material.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Springer
    In:  In: The Northern North Atlantic: A Changing Environment. , ed. by Schäfer, P., Ritzrau, W., Schlüter, M. and Thiede, J. Springer, Berlin, Germany, pp. 69-79.
    Publication Date: 2020-04-01
    Description: A decade of particle flux measurements providse the basis for a comparison of the eastem and westem provinces ofthe Nordic Seas. Ice-related physical and biological seasonality as well as pelagic settings jointly control fluxes in the westem Polar Province which receives southward flowing water of Polar origin. Sediment trap data from this realm highlight a predominantly physical flux control which leads to exports of siliceous particles within the biological marginal ice zone as a prominent contributor. In the northward flowing waters of the eastem Atlantic Province, feeding Strategie . life histories and the succession of dominant mesozooplankters (copepods and pteropods) are central in controlling fluxes. Furthermore, more calcareous matter is exported here with a shift in flux seasonality towards surnrner/autumn. Dominant pelagic processes modeled numerically as to their impact on annual organic carbon exports for both provinces confirrn that interannual flux variability is related to changes in the respective control mechanisms. Annual organic carbon exports are strikingly similar in the Polar and Atlantic Provinces (2.4 and 2.9 g m-2 y-1 at 500 m depth). despite major differences in flux control. The Polar and Atlantic Provinces. however, can be distinguished according to annual fluxes of opal ( l.4 and 0.6 g m-2 y-1) and carbonate (6.8 and 10.4 g m-2 y-1). lnterannual variability may blur this in single years. Thus. it is vital to use multi-annual data sets when including particle exports in general biogeochemical province descriptions. Vertical flux profiles (collections from 500 m, l000 min both provinces and 300-600 m above the seafloor deviate from the general vertical decline of fluxes due to particle degradation during sinking. At depths 〉 1000 m secondary fluxes (laterally advected/re uspended particles) are often juxtaposed to primary (pelagic) fluxes, a pattem which is most prominent in the Atlantic Province. Spatial variability within theAtlantic Province remains poorly understood. and the same holds true for interannual variability. No proxies are at hand for this province to quantitatively relate fluxes to physical or biological pelagic properties. For the easonally ice-covered Polar Province a robust relationship exists between particle export and ambient ice-regime (Ramseier et al. this volume; Ramseier et al. 1999). Spatial flux pattems may be differentiated and interannual variability can be analyzed in this manner to improve our ability to couple pelagic export pattems with benthic and geochemical sedimentary processes in seasonally ice-covered seas.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Gustav Fischer Verlag
    In:  In: Praktikum der Protozoologie. , ed. by Röttger, R. Gustav Fischer Verlag, Stuttgart, pp. 208-215. ISBN 3-437-30754-1
    Publication Date: 2019-07-26
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-08-05
    Description: We present barium data for sediment traps deployed in a northeast Atlantic margin environment (Bay of Biscay). Fluxes of excess barium were measured with the objective of calculating carbon export production rates from the surface mixed layer and thus contribute to the understanding of organic carbon transport in a margin environment. Therefore, it was necessary to properly understand the different processes that affected the barium fluxes in this margin environment. Seasonal variability of POC/Ba flux ratios and decrease of barium solubilisation in the trap cups with increasing depth in the water column probably indicate that the efficiency of barite formation in the organic micro-environment varies with season and that the process is relatively slow and not yet completed in the upper 600 m of water column. Thus barite presence in biogenic aggregates will significantly depend on water column transit time of these aggregates. Furthermore, it was observed that significant lateral input of excess-Ba can occur, probably associated with residual currents leaving the margin. This advected excess-Ba affected especially the recorded fluxes in the deeper traps (〉1000 m) of the outer slope region. We have attempted to correct for this advected excess-Ba component, using Th (reported by others for the same samples) as an indicator of enhanced lateral flux and assigning a characteristic Ba/Th ratio to advected material. Using transfer functions relating excess-Ba flux with export production characteristic of margin areas, observed Ba fluxes indicate an export production between 7 and 18 g C m−2 yr−1. Such values are 3–7 times lower than estimates based on N-nutrient uptake and nutrient mass balances, but larger and more realistic than is obtained when a transfer function characteristic of open ocean systems is applied. The discrepancy between export production estimates based on excess-Ba fluxes and nutrient uptake could be resolved if part of the carbon is exported as dissolved organic matter. Results suggest that margin systems function differently from open ocean systems, and therefore Ba-proxy rationales developed for open ocean sites might not be applicable in margin areas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part II: Topical Studies in Oceanography, 48 (14-15) . pp. 3083-3106.
    Publication Date: 2020-08-05
    Description: A synopsis of results from two sediment trap moorings deployed at the mid- and outer slope (water depths 1450 and 3660 m, respectively) of the Goban Spur (N.E. Atlantic Margin) is presented. Fluxes increase with trap deployment depth; below 1000 m resuspended and advected material contributes increasingly to bulk flux. Fluxes of dry weight, POC and diatoms in the traps 400 m above bottom (mab) are smaller than those recorded at the sediment surface due to lateral fluxes in the benthic nepheloid layer. These near-bottom fluxes are larger at shallower water depths. 231Pa/230Th ratios in sedimenting material suggest that boundary scavenging is not significant at the Goban Spur. Fluxes of 210Pb in the intermediate and deep traps are comparable to the 210Pb supply rate at this site. At the outer slope, sediment 210Pb fluxes are similar to those measured in the traps 400 mab; at the mid-slope they are a factor of 2 higher, once again indicating large near-bottom lateral particle input. Based on POC-normalised biomarkers in sedimenting material, we followed changes in the quality of sedimenting material with differing trap depth and on seasonal and event-related time scales. In spring fresh, diatom-dominated sedimentation occurs, with progressive degradation of POC with time (to winter) and depth (from 600 to 3220 m). Deeper traps are distinguished on the basis of opal and aluminium fluxes that are dominant in lateral input. A storm event during late September 1993 was clearly reflected in the δ15N isotope ratio of sedimenting material, with a time lag of 2–3 weeks. Diatom and opal fluxes were elevated in this storm-related signal, and its biomarker composition in the 600-m trap was similar to that during spring. An estimate made of upward nitrate flux (new production) at the shelf break and at the outer slope indicated a 2-fold higher new (export) production at the shelf break. Particulate organic carbon export from the shelf break to below the depth of maximal seasonal mixing ranges between 3 and 9% of primary production.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...