GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (5)
  • Blackwell Science Ltd  (3)
  • ASLO (Association for the Sciences of Limnology and Oceanography)  (1)
Document type
Publisher
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Freshwater biology 50 (2005), S. 0 
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: 1. We examined the contribution of algal cells to periphytic organic carbon and assessed the effects of variable biomass composition on the carbon : phosphorus (C : P) ratio of periphyton. We compiled more than 5000 published and unpublished observations of periphytic carbon : chlorophyll a (C : Chl) ratios, an index of algal prevalence, from a variety of substrata collected from lake and low-salinity coastal habitats. In addition, we converted estimates of algal biovolume into algal C to obtain an independent measure of cellular algal carbon in periphyton. This information was used in a model relating periphyton C : P ratio to algal cellular carbon, the algal C : P ratio, and the C : P ratio of non-algal organic matter in periphyton.2. The mean C : Chl ratio of periphyton (405) was relatively high with values in 〉25% of the samples exceeding 500. On average, 8.4% of total periphyton C was accounted for by C in algal cells. Only 15% of samples were found to have more than 15% periphyton C in cellular algal carbon. Our model showed a nonlinear relationship between periphytic C : P ratios and the C : P ratio of algal cells in the periphyton when non-algal organic matter was present. However, even at relatively low cellular algal C (〈10% of total C), algal C : P ratios can strongly affect the C : P ratio of periphyton as a whole (i.e. algal cells plus other organic matter).3. The high C : Chl ratios and the low biovolume-derived algal C of periphyton samples in our data set indicate that algal cells are typically a minor component of organic carbon in periphyton, However, this minor contribution would not preclude algal cellular stoichiometry from notably influencing periphyton C : P ratios.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: 1. The aim of this study was to estimate patchiness in biomass and in the internal nutrient status of benthic algae on hard substrata (epilithon) in Lake Erken, Sweden, over different levels of distance, depth and time. Knowledge of the sources and scale of patchiness should enable more precise estimation of epilithic biomass and nutrient status for the entire lake. We focused on the horizontal scale, about which little is known.2. We sampled epilithon by SCUBA diving and used a hierarchical sampling design with different horizontal scales (cm, dm, 10 m, km) which were nested in two temporal scales (within and between seasons). We also compared two successive years and three sampling depths (0, 1 and 4 m). Biomass was measured as particulate carbon and chlorophyll a (Chl a) and internal nutrient status as carbon : nitrogen : phosphorus (C : N : P) ratios and as specific alkaline phosphatase activity (APA).3. Horizontal variation accounted for 60–80 and 7–70% of the total variation in biomass and in nutrient status, respectively, at all depths and during both years. Both small and large scales accounted for significant variation. We also found variation with time and depth. Biomass increased in autumn after a summer minimum, and the within-season variation was very high. The lowest biomass was found at 0 m depth. Both N and P limitation occurred, being higher in 1996 than in 1997 and decreased with depth.4. As a consequence, any sampling design must address variation with distance, depth and time when estimating biomass or nutrient limitation of benthic algae for an entire lake. Based on this analysis, we calculated an optimal sampling design for detecting change in the epilithic biomass of Lake Erken between different sampling days. It is important to repeat the sampling as often as possible, but also the large scales (10 m and km) and the dm scale should be replicated. Using our calculations as an example, and after a pilot study, an optimal sampling design can be computed for various objectives and for any lake.5. Short-term impact of the wind, light and nutrient limitation, and grazing, might be important in regulating the biomass and nutrient status of epilithic algae in Lake Erken. Patchiness in the nutrient status of algae was not coupled to the patchiness of biomass, indicating that internal nutrients and biomass were regulated by different factors.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Global change biology 8 (2002), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Climate variations over the Northern Hemisphere are to a substantial proportion associated with the North Atlantic Oscillation (NAO). Recently, many studies revealed the impacts of the NAO on the dynamics of organisms in different ecosystems but the results in the single studies were inconsistent. Here, we used meta-analysis techniques for a quantitative synthesis of results. We tested the influence of the NAO on the timing of life history events, on biomass of organisms, and on biomass of different trophic levels. We found a clear NAO signature in freshwater, marine, and terrestrial ecosystems. The response of life history events to the NAO was similar in all environments but less pronounced at higher latitudes. The magnitude of the biomass response was significantly related to the NAO, either positively in aquatic or negatively in terrestrial ecosystems. The response depended on longitude, the effect being less pronounced in Eastern Europe. The results stressed that a meta-analysis is a valuable tool in the field of climate-driven ecosystem responses and can identify more general ecological responses than single studies. We recommend the inclusion of nonsignificant results in order to archive an objective view of the strength of NAO and climate impacts in general.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-07-19
    Description: Highlights: • We used indoor mesocosms to test the impact of warming on plankton communities. • Different stages of phytoplankton bloom were analysed. • Increased temperature and zooplankton grazing had similar effects on phytoplankton. • Warming and increased zooplankton density decreased phytoplankton richness. • Warming and increased zooplankton density increased phytoplankton evenness. Recent climate warming is expected to affect phytoplankton biomass and diversity in marine ecosystems. Temperature can act directly on phytoplankton (e.g. rendering physiological processes) or indirectly due to changes in zooplankton grazing activity. We tested experimentally the impact of increased temperature on natural phytoplankton and zooplankton communities using indoor mesocosms and combined the results from different experimental years applying a meta-analytic approach. We divided our analysis into three bloom phases to define the strength of temperature and zooplankton impacts on phytoplankton in different stages of bloom development. Within the constraints of an experiment, our results suggest that increased temperature and zooplankton grazing have similar effects on phytoplankton diversity, which are most apparent in the post-bloom phase, when zooplankton abundances reach the highest values. Moreover, we observed changes in zooplankton composition in response to warming and initial conditions, which can additionally affect phytoplankton diversity, because changing feeding preferences of zooplankton can affect phytoplankton community structure. We conclude that phytoplankton diversity is indirectly affected by temperature in the post-bloom phase through changing zooplankton composition and grazing activities. Before and during the bloom, however, these effects seem to be overruled by temperature enhanced bottom-up processes such as phytoplankton nutrient uptake.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Elsevier
    In:  Aquatic Botany, 67 (3). pp. 221-236.
    Publication Date: 2017-12-12
    Description: The factors regulating species diversity have received increasing attention in the face of the global biodiversity loss, but are not well understood for unicellular organisms. We conducted in situ experiments in Kiel Fjord in order to analyze the response of microalgal diversity to colonization time and to artificial eutrophication. Diversity decreased throughout colonization time (maximum: 12 weeks), whereas species richness initially increased to about 25 species before it leveled off. The proposed unimodal time course of diversity during succession could not be detected for diversity or species richness. The rapid decrease of evenness indicated a greater importance of algal growth on the substrata compared to the arrival of new species. Artificial eutrophication led to an decrease of diversity, which could be correlated to the supply concentrations of the limiting nutrient: P in spring, N in summer and Si in the presence of high concentrations of N and P. The decrease was due to an increased dominance of few species (i.e. reduced evenness), whereas species richness was not or positively correlated to nutrient supply. Species richness was negatively correlated to evenness and diversity measures. Thus, species diversity indices are useful response variable to measure environmental effects on local periphyton communities
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-07-19
    Description: In order to examine the effects of warming and diversity changes on primary productivity, we conducted a meta-analysis on six independent indoor mesocosm experiments with a natural plankton community from the Baltic Sea. Temperature effects on primary productivity changed with light intensity and zooplankton density and analysed pathways between temperature, diversity and productivity, elucidating direct and indirect effects of warming on primary productivity during the spring phytoplankton bloom. Our findings indicate that warming directly increased carbon specific primary productivity, which was more pronounced under low grazing pressure. On the other hand, primary productivity per unit water volume did not respond to increased temperature, because of a negative temperature effect on phytoplankton biomass. Moreover, primary productivity response to temperature changes depended on light limitation. Using path analysis, we tested whether temperature effects were direct or mediated by warming effects on phytoplankton diversity. Although phytoplankton species richness had a positive impact on both net primary productivity and carbon specific primary productivity – and evenness had a negative effect on net primary productivity – both richness and evenness were not affected by temperature. Thus, we suggest that diversity effects on primary productivity depended mainly on other factors than temperature like grazing, sinking or nutrient limitation, which themselves are temperature dependent. Highlights ► Impact of warming on primary productivity and diversity–productivity relationship. ► Meta-analysis on indoor mesocosm experiments with a natural plankton community. ► Temperature has a direct impact on specific productivity, not on net productivity. ► Species richness increases and evenness decreases net primary productivity. ► Temperature does not directly affect diversity–productivity relationship.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 44 . pp. 440-446.
    Publication Date: 2018-06-25
    Description: Cellular nutrient ratios are often applied as indicators of nutrient limitation in phytoplankton studies, especially the so-called Redfield ratio. For periphyton, similar data are scarce. We investigated the changes in cellular C: N: P stoichiometry of benthic microalgae in response to different levels and types of nutrient limitation and a variety of abiotic conditions in laboratory experiments with natural inocula. C: N ratios increased with decreasing growth rate, irrespective of the limiting nutrient. At the highest growth rates, the C: N ratio ranged uniformly around 7.5. N: P ratios 〈13 indicated N limitation, while N: P ratios 〉22 indicated P limitation. Under P limitation, the C: P ratios increased at low growth rate and varied around 130 at highest growth rates. For a medium with balanced supply of N and P, an optimal stoichiometric ratio of C: N: P = 119 : 17 : 1 could be deduced for benthic microalgae, which is slightly higher than the Redfield ratio (106 : 16 : 1) considered typical for optimally growing phytoplankton. The optimal ratio was stable against changes in abiotic conditions. In conclusion, cellular nutrient ratios are proposed as an indicator for nutrient status in periphyton.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-06-12
    Description: Field experiments were conducted to investigate the effects of grazing and nutrient supply on sediment microflora in a freshwater habitat (Lake Erken, Sweden) and at the brackish Baltic Sea coast (Väddö, Sweden). The two sites were of similar productivity, but had contrasting herbivore composition. In a full-factorial experiment design, closed cages excluded macrozoobenthos (〉1 mm) from sediment patches, whereas open cages allowed grazer access. The cage design applied here proved to successfully prevent in- and epifauna to access the sediment in closed cages. In half of the treatments, nutrients were added to the water-column by a slow-release fertilizer. The experiments were seasonally replicated four times at Väddö and two times in Lake Erken. After 4–5 weeks, sediment cores were sampled and analyzed for chlorophyll, carbon, nitrogen and phosphorus. The benthic microalgae showed strong seasonal variation in biomass and internal nutrient content. At Väddö, neither grazing nor nutrients affected the algal biomass significantly, but significant grazer effects were detected on C:N:P ratios. In Lake Erken, grazer presence reduced algal biomass by ca. 50%, whereas nutrients were without effect on biomass or on nutrient content. Compared to results from hard substrata at the same sites, sediment microflora was less affected by nutrients and grazing. This may be due to the harsh physico-chemical environment on sediments, to low grazer density at the coastal site and to low availability of water column nutrients to sediment microalgae. In our experiments, sand-dwelling microphytobenthic communities represented a highly dynamic assemblage, which, however, is less structured by biotic interactions than epilithic periphyton
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-09-22
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...