GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • OceanRep  (2)
  • AMS (American Meteorological Society)  (2)
  • 1
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Atmospheric and Oceanic Technology, 12 (4). pp. 923-934.
    Publication Date: 2020-08-04
    Description: A method to derive salinity data from RAFOS float temperature and pressure measurements is described. It is based on evaluating the float's in situ density from its mechanical properties and in situ pressure and temperature data. The salinity of the surrounding water may then be determined, assuming that the float has reached equilibrium with its environment. This method, in comparison with the possible use of floatborne salinity cells, has the advantage of being both cost and energy neutral and highly stable in the long term. The effect on the estimated salinity of various parameters used in the determination of the float's in situ density is discussed. Results of seven RAFOS Boats deployed in the Brazil Basin are compared with corresponding CTD data to estimate the magnitude of these errors. At present, an accuracy of 0.3 psu is achieved. The accuracy may be improved to 0.02 psu by referring the float's calculated density to a reference density established by a CTD cast at the time of launch. Results from five floats deployed in the heterogeneous water masses of the Iberian Basin are compared with the corresponding CM casts to demonstrate the variability and interpretation of p-T-S float datasets from different areas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-03-07
    Description: Ocean currents’ effect on long-range sound propagation, though considerable in many cases, is difficult to separate from much stronger effects due to sound speed inhomogeneities, as flow velocity is usually much smaller than typical variations in the sound speed. Dramatic improvement can be achieved in reciprocal transmission experiments when sound signals propagate in opposite directions between two transceivers (source–receiver pairs). The presence of a current results in the breaking of the principle of acoustic reciprocity, thus making it possible to use nonreciprocity of acoustic field as an indicator of water movement. In this paper, reciprocal acoustic transmissions through a submesoscale interthermocline lens of Mediterranean Water (meddy) in the Atlantic are considered theoretically as a possible tool for meddies detection. A simple model of acoustic ray-travel-time nonreciprocity due to a meddy is proposed. The analytic estimates obtained from the model show that the influence of rotary flow is more important than that of drift and seems to be measurable. The problem is studied in more detail via computer simulations. The environmental model used in the simulations corresponds to case studies performed in the Iberian Basin in 1989 and 1991. Numerical simulations show that travel times between two transceivers can be gathered into several groups; for the most part, rays in each set have similar geometry for both propagation directions. However, the lens strongly affects the number of rays in each group, their launch angles, and number of surface interactions, making it impossible to identify these arrivals as required for conventional ocean acoustic tomography. In spite of complexity of ray structure, travel-time nonreciprocity predicted by the model proposed is in good agreement with numerical results. This fact suggests that the model could be used to estimate some parameters of a meddy.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...