GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (3)
  • AMS (American Meteorological Society)  (1)
Document type
Publisher
Years
  • 1
    Publication Date: 2020-06-26
    Description: Climate model results for the Baltic Sea region from an ensemble of eight simulations using the Rossby Centre Atmosphere model version 3 (RCA3) driven with lateral boundary data from global climate models (GCMs) are compared with results from a downscaled ERA40 simulation and gridded observations from 1980-2006. The results showed that data from RCA3 scenario simulations should not be used as forcing for Baltic Sea models in climate change impact studies because biases of the control climate significantly affect the simulated changes of future projections. For instance, biases of the sea ice cover in RCA3 in the present climate affect the sensitivity of the model's response to changing climate due to the ice-albedo feedback. From the large ensemble of available RCA3 scenario simulations two GCMs with good performance in downscaling experiments during the control period 1980-2006 were selected. In this study, only the quality of atmospheric surface fields over the Baltic Sea was chosen as a selection criterion. For the greenhouse gas emission scenario A1B two transient simulations for 1961-2100 driven by these two GCMs were performed using the regional, fully coupled atmosphere-ice-ocean model RCAO. It was shown that RCAO has the potential to improve the results in downscaling experiments driven by GCMs considerably, because sea surface temperatures and sea ice concentrations are calculated more realistically with RCAO than when RCA3 has been forced with surface boundary data from GCMs. For instance, the seasonal 2 m air temperature cycle is closer to observations in RCAO than in RCA3 downscaling simulations. However, the parameterizations of air-sea fluxes in RCAO need to be improved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Elsevier
    In:  Ecological Modelling, 222 (8). pp. 1376-1386.
    Publication Date: 2017-02-21
    Description: Pelagic, coupled ocean circulation-ecosystem models, are widely used in climate research. These tools aim to quantify fluxes of nutrients and carbon in the ocean and are, increasingly, the base of future projections. For this purpose it is crucial to quantify and identify the sources of uncertainties. In contrast to physical models, the underlying equations for ecosystem models are derived from empirical relationships rather than based on first principles. This resulted in the development of a multitude of different ecosystem models – different in respect to both, underlying principles and complexity. Clearly, the question arises, to what extent the sensitivities of these models are comparable. This study focuses on the intrinsic dynamics of some widely used, simple (containing 2–3 prognostic variables) ecosystem models in a 0-D framework (i.e., comprising only the well-mixed oceanic surface layer). A suite of differing model approaches is tuned such that their behavior is similar. The setup resembles the well-mixed oceanic surface layer in the Baltic proper. It is illustrated that strong differences between the model approaches appear due to exemplary, anticipated changes in the external nutrient and light conditions. Herewith, we demonstrate the well-known, but rarely demonstrated fact that, apparent consistency between modeled prognostic variables with today's data bases is not necessarily a good measure of forecast skill. The causes which lead to the different sensitivities are illustrated by considering the steady state solutions. It is pointed out, that apparently small changes in the model formulations can result in very different dynamical behavior and an enormous spread between the model approaches, despite the feasibility to tune a common behavior in a limited range of light and nutrient supply. In our examples, the sensitivity is mainly a function of the formulation of the loss rate of phytoplankton. It is thus, in particular, the formulation of highly unknown heteorotrophic processes that determines the model sensitivity.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-07-13
    Description: The aim of the present study is to investigate the influence of enhanced absorption of sunlight at the sea surface due to increasing water turbidity and its effect on the sea surface temperatures (SST) in the Baltic Sea. The major question behind our investigations is, whether this effect needs to be included in Baltic Sea circulation models or can be neglected. Our investigations cover both, mean state and SST trends during the recent decades. To quantify the impact of water turbidity on the mean state different sensitivity ocean hind-cast experiments are performed. The state-of-the art ocean model RCO (Rossby Centre Ocean model) is used to simulate the period from 1962 to 2007. In the first simulation, a spatially and temporally constant value for the attenuation depth is used, while in the second experiment a climatological monthly mean, spatially varying attenuation coefficient is derived from satellite observations of the diffuse attenuation coefficient at 490 nm. The inclusion of a spatially varying light attenuation leads to significant SST changes during summer. Maximum values of + 0.5 K are reached in the Gulf of Finland and close to the eastern coasts, when compared to a fixed attenuation of visible light of 0.2 m− 1. The temperature anomalies basically match the pattern of increased light attenuation with strongest effects in shallow waters. Secondary effects due to changes in the current system are of minor importance. Similar results are obtained when considering trends. In the absence of long-term basin wide observations of attenuation coefficients, some idealizations have to be applied when investigating the possible influence of long-term changes in water turbidity on the SST. Two additional sensitivity experiments are based on a combination of long-term Secchi depth station observations and the present day pattern of water turbidity, as observed by satellite. We show the potential of increased water turbidity to affect the summer SST trends in the Baltic Sea significantly, while the estimated effect is apparently too small to explain the overall extreme summer trends observed in the Baltic Sea. Highlights ► Investigation of the modeled influence of water turbidity on the sea surface temperature (SST) of the Baltic Sea. ► Hind-cast simulations (1962–2007) with different attenuation depths, using the regional ocean model RCO. ► The inclusion of an observed spatially varying light leads regionally to significant SST changes during summer. ► Secondary effects due to changes in the current system are of minor importance. ► The influence of increasing water turbidity on SST trends is regionally statistically significant while the effect is rather small.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: The physical processes driving the genesis of surface- and subsurface-intensified cyclonic and anticyclonic eddies originating from the coastal current system of the Mauritanian Upwelling Region are investigated using a high-resolution (~1.5 km) configuration of GFDL’s Modular Ocean Model. Estimating an energy budget for the boundary current reveals a baroclinically unstable state during its intensification phase in boreal summer and which is driving eddy generation within the near-coastal region. The mean poleward coastal flow’s interaction with the sloping topography induces enhanced anticyclonic vorticity, with potential vorticity close to zero generated in the bottom boundary layer. Flow separation at sharp topographic bends intensifies the anticyclonic vorticity, and submesoscale structures of low PV coalesce to form anticyclonic vortices. A combination of offshore Ekman transport and horizontal advection determined the amount of SACW in an anticyclonic eddy. A vortex with a relatively dense and low PV core will form an anticyclonic mode-water eddy, which will subduct along isopycnals while propagating offshore and hence be shielded from surface buoyancy forcing. Less contribution of dense SACW promotes the generation of surface anticyclonic eddies as the core is composed of a lighter water mass, which causes the eddy to stay closer to the surface and hence be exposed to surface buoyancy forcing. Simulated cyclonic eddies are formed between the rotational flow of an offshore anticyclonic vortex and a poleward flowing boundary current, with eddy potential energy being the dominant source of eddy kinetic energy. All three types of eddies play a key role in the exchange between the Mauritanian Coastal currents system and the adjacent eastern boundary shadow zone region.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...