GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AMS (American Meteorological Society)  (1)
  • Elsevier  (1)
  • 1
    Publication Date: 2019-02-01
    Description: A German national project coordinates research on improving a global decadal climate prediction system for future operational use. MiKlip, an eight-year German national research project on decadal climate prediction, is organized around a global prediction system comprising the climate model MPI-ESM together with an initialization procedure and a model evaluation system. This paper summarizes the lessons learned from MiKlip so far; some are purely scientific, others concern strategies and structures of research that targets future operational use. Three prediction-system generations have been constructed, characterized by alternative initialization strategies; the later generations show a marked improvement in hindcast skill for surface temperature. Hindcast skill is also identified for multi-year-mean European summer surface temperatures, extra-tropical cyclone tracks, the Quasi-Biennial Oscillation, and ocean carbon uptake, among others. Regionalization maintains or slightly enhances the skill in European surface temperature inherited from the global model and also displays hindcast skill for wind-energy output. A new volcano code package permits rapid modification of the predictions in response to a future eruption. MiKlip has demonstrated the efficacy of subjecting a single global prediction system to a major research effort. The benefits of this strategy include the rapid cycling through the prediction-system generations, the development of a sophisticated evaluation package usable by all MiKlip researchers, and regional applications of the global predictions. Open research questions include the optimal balance between model resolution and ensemble size, the appropriate method for constructing a prediction ensemble, and the decision between full-field and anomaly initialization. Operational use of the MiKlip system is targeted for the end of the current decade, with a recommended generational cycle of two to three years.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part I: Oceanographic Research Papers, 52 (1). pp. 99-121.
    Publication Date: 2016-11-01
    Description: A suite of high-resolution models of the Atlantic Ocean circulation is used to study the deep seasonal current variability in the equatorial regime, with a particular emphasis on its manifestation in the variability of the interhemispheric transports near the western boundary. The basic experiment has a resolution of 1/3∘1/3∘ horizontally and 45 vertical levels, and is subject to a monthly mean atmospheric forcing based on ECMWF flux fields. Sensitivity experiments explore the effects of higher horizontal resolution (1/12∘1/12∘), and alternative mixing parameterizations. The model behavior near the equator confirms previous suggestions based on solutions of the WOCE Community Modelling Effort (“CME”) and the “DYNAMO” model intercomparison project, of the presence of a system of vigorous seasonal current oscillations, spanning the whole water column and nearly the whole zonal extent of the basin. The patterns of the primarily zonal current anomalies are fairly robust across the range of model cases investigated, i.e., show relatively little sensitivity to horizontal resolution/mixing, or to the different choices of vertical discretization and vertical mixing as in the DYNAMO cases. The amplitude of the seasonal variation exceeds 10 cm/s in the surface layer, and decreases to about 5 cm/s near 1000 m and 2–3 cm/s in the deep ocean in both the basic 1/3∘1/3∘- and the 1/12∘1/12∘-cases, thereby leading to seasonally reversing current signatures at all depths below the EUC. A particular aspect of the seasonal current variability concerns its manifestation in the southward transport of North Atlantic Deep Water (NADW) by the Deep Western Boundary Current (DWBC). The temporal characteristics of the DWBC variability are in agreement with moored current meter observations at 44∘W44∘W, with simulated DWBC transports varying between a maximum of more than 30 Sv in January/February, and almost vanishing transport in September. However, in contrast to the annual-mean deep water transport which is confined to the DWBC and tight, O(100) km-recirculation cells, the seasonal cycle of transport is not trapped near the boundary: the simulations show that the zonal current variations of the equatorial wave guide, near the western boundary give rise to a broad system of seasonal recirculation cells of the DWBC. Calculations of the amplitude of the seasonal variability in the deep water transport near the equator are therefore strongly dependent of the spatial extent of the cross-section considered; in particular, for being approximately representative of low-frequency variations in the net, zonally-integrated meridional transport of deep water in the equatorial regime, transport sections would need to extend over nearly the whole western basin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...