GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • OceanRep  (5)
  • AMS (American Meteorological Society)  (4)
  • Copernicus Publications (EGU)  (1)
Document type
  • OceanRep  (5)
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 25 (1). pp. 207-221.
    Publication Date: 2014-10-21
    Description: Antarctic Intermediate Water (AAIW) is a dominant Southern Hemisphere water mass that spreads from its formation regions just north of the Antarctic Circumpolar Current (ACC) to at least 20°S in all oceans. This study uses an isopycnal climatology constructed from Argo conductivity–temperature–depth (CTD) profile data to define the current state of the AAIW salinity minimum (its core) and thence compute anomalies of AAIW core pressure, potential temperature, salinity, and potential density since the mid-1970s from ship-based CTD profiles. The results are used to calculate maps of temporal property trends at the AAIW core, where statistically significant strong circumpolar shoaling (30–50 dbar decade−1), warming (0.05°–0.15°C decade−1), and density reductions [up to −0.03 (kg m−3) decade−1] are found. These trends are strongest just north of the ACC in the southeast Pacific and Atlantic Oceans and decrease equatorward. Salinity trends are generally small, with their sign varying regionally. Bottle data are used to extend the AAIW core potential temperature anomaly analysis back to 1925 in the Atlantic and to ~1960 elsewhere. The modern warm AAIW core conditions appear largely unprecedented in the historical record: biennially and zonally binned median AAIW core potential temperatures within each ocean basin are, with the notable exception of the subtropical South Atlantic in the 1950s–70s, 0.2–1°C colder than modern values. Zonally averaged sea surface temperature anomalies around the AAIW formation latitudes in each ocean and sectoral southern annular mode indices are used to put the AAIW core property trends and variations into context.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: The Earth climate system is out of energy balance, and heat has accumulated continuously over the past decades, warming the ocean, the land, the cryosphere, and the atmosphere. According to the Sixth Assessment Report by Working Group I of the Intergovernmental Panel on Climate Change, this planetary warming over multiple decades is human-driven and results in unprecedented and committed changes to the Earth system, with adverse impacts for ecosystems and human systems. The Earth heat inventory provides a measure of the Earth energy imbalance (EEI) and allows for quantifying how much heat has accumulated in the Earth system, as well as where the heat is stored. Here we show that the Earth system has continued to accumulate heat, with 381±61 ZJ accumulated from 1971 to 2020. This is equivalent to a heating rate (i.e., the EEI) of 0.48±0.1 W m−2. The majority, about 89 %, of this heat is stored in the ocean, followed by about 6 % on land, 1 % in the atmosphere, and about 4 % available for melting the cryosphere. Over the most recent period (2006–2020), the EEI amounts to 0.76±0.2 W m−2. The Earth energy imbalance is the most fundamental global climate indicator that the scientific community and the public can use as the measure of how well the world is doing in the task of bringing anthropogenic climate change under control. Moreover, this indicator is highly complementary to other established ones like global mean surface temperature as it represents a robust measure of the rate of climate change and its future commitment. We call for an implementation of the Earth energy imbalance into the Paris Agreement's Global Stocktake based on best available science. The Earth heat inventory in this study, updated from von Schuckmann et al. (2020), is underpinned by worldwide multidisciplinary collaboration and demonstrates the critical importance of concerted international efforts for climate change monitoring and community-based recommendations and we also call for urgently needed actions for enabling continuity, archiving, rescuing, and calibrating efforts to assure improved and long-term monitoring capacity of the global climate observing system. The data for the Earth heat inventory are publicly available, and more details are provided in Table 4.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: The Earth system is accumulating energy due to human-induced activities. More than 90% of this energy has been stored in the ocean as heat since 1970, with similar to 60% of that in the upper 700 m. Differences in upper-ocean heat content anomaly (OHCA) estimates, however, exist. Here, we use a dataset protocol for 1970-2008-with six instrumental bias adjustments applied to expendable bathythermograph (XBT) data, and mapped by six research groups-to evaluate the spatiotemporal spread in upper OHCA estimates arising from two choices: 1) those arising from instrumental bias adjustments and 2) those arising from mathematical (i.e., mapping) techniques to interpolate and extrapolate data in space and time. We also examined the effect of a common ocean mask, which reveals that exclusion of shallow seas can reduce global OHCA estimates up to 13%. Spread due to mapping method is largest in the Indian Ocean and in the eddy-rich and frontal regions of all basins. Spread due to XBT bias adjustment is largest in the Pacific Ocean within 30 degrees N-30 degrees S. In both mapping and XBT cases, spread is higher for 1990-2004. Statistically different trends among mapping methods are found not only in the poorly observed Southern Ocean but also in the well-observed northwest Atlantic. Our results cannot determine the best mapping or bias adjustment schemes, but they identify where important sensitivities exist, and thus where further understanding will help to refine OHCA estimates. These results highlight the need for further coordinated OHCA studies to evaluate the performance of existing mapping methods along with comprehensive assessment of uncertainty estimates.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-08
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-04-08
    Description: State of the climate in 2019
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...