GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AMS (American Meteorological Society)  (3)
  • American Society of Limnology and Oceanography  (2)
  • Fraunhofer IGD  (1)
  • Royal Society of London  (1)
  • 1
    Publication Date: 2020-02-06
    Description: Large and productive fisheries occur in regions experiencing or projected to experience ocean acidification. Anchoveta (Engraulis ringens) constitute the world's largest single-species fishery and live in one of the ocean's highest pCO2 regions. We investigated the relationship of the distribution and abundance of Anchoveta eggs and larvae to natural gradients in pCO2 in the Peruvian upwelling system. Eggs and larvae, zooplankton, and data on temperature, salinity, chlorophyll a and pCO2 were collected during a cruise off Peru in 2013. pCO2 ranged from 167-1392 µatm and explained variability in egg presence, an index of spawning habitat. Zooplankton abundance explained variability in the abundance of small larvae. Within the main spawning and larva habitats (6-10°S), eggs were found in cool, low-salinity, and both extremely low (less than 200 µatm) and high (more than 900 µatm) pCO2 waters, and larvae were collected in warmer, higher salinity, and moderate (400-600 µatm) pCO2 waters. Our data support the hypothesis that Anchoveta preferentially spawned at high pCO2 and these eggs had lower survival. Enhanced understanding of the influence of pCO2 on Anchoveta spawning and larva mortality, together with pCO2 measurements, may enable predictions of ocean acidification effects on Anchoveta and inform adaptive fisheries management.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: The role of the global surface ocean as a source and sink for atmospheric carbon dioxide and the flux strengths between the ocean and the atmosphere can be quantified by measuring the fugacity of CO2 (ƒCO2) as well as the dissolved inorganic carbon (DIC) concentration and its isotopic composition in surface seawater. In this work, the potential of continuous wave cavity ringdown spectroscopy (cw-CRDS) for autonomous underway measurements of ƒCO2 and the stable carbon isotope ratio of DIC [δ13C(DIC)] is explored. For the first time, by using a conventional air-sea equilibrator setup, both quantities were continuously and simultaneously recorded during a field deployment on two research cruises following meridional transects across the Atlantic Ocean (Bremerhaven, Germany–Punta Arenas, Chile). Data are compared against reference measurements by an established underway CO2 monitoring system and isotope ratio mass spectrometric analysis of individual water samples. Agreement within ΔƒCO2 = 0.35 μatm for atmospheric and ΔƒCO2 = 2.5 μatm and Δδ13C(DIC) =0.33‰ for seawater measurements have been achieved. Whereas “calibration-free” ƒCO2 monitoring is feasible, the measurement of accurate isotope ratios relies on running reference standards on a daily basis. Overall, the installed CRDS/equilibrator system was shown to be capable of reliable online monitoring of ƒCO2, equilibrium δ13C(CO2), δ13C(DIC), and pO2 aboard moving research vessels, thus making possible corresponding measurements with high spatial and temporal resolution.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Atmospheric and Oceanic Technology, 31 (1). pp. 181-196.
    Publication Date: 2020-08-04
    Description: We present a detailed quality assessment of a novel underwater sensor for the measurement of CO2 partial pressure (pCO2) based on surface water field deployments carried out between 2008 and 2011. The commercially available sensor, which is based on membrane equilibration and NDIR spectrometry is small and can be integrated into mobile platforms. It is calibrated in water against a proven flow-through pCO2 instrument within a custom-built calibration setup. The aspect of highest concern with respect to achievable data quality of the sensor is the compensation for signal drift inevitably connected to absorption measurements. We use three means to correct for drift effects: (i) a filter correlation or dual-beam setup, (ii) regular zero gas measurements realized automatically within the sensor and (iii) a zero-based transformation of two sensor calibrations flanking the time of sensor deployment. Three sensors were tested against an underway pCO2 system during two major research cruises providing an in situ temperature range from 7.4 to 30.1°C and pCO2 values between 289 and 445 μatm. The average difference between sensor and reference pCO2 was found to be -0.6 ± 3 μatm with a RMSE of 3.7 μatm.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Atmospheric and Oceanic Technology, 30 . pp. 112-126.
    Publication Date: 2020-08-04
    Description: In recent years, profiling floats, which form the basis of the successful international Argo observatory, are also being considered as platforms for marine biogeochemical research. This study showcases the utility of floats as a novel tool for combined gas measurements of CO2 partial pressure (pCO2) and O2. These float prototypes were equipped with a small-sized and submersible pCO2 sensor and an optode O2 sensor for high resolution measurements in the surface ocean layer. Four consecutive deployments were carried out during Nov. 2010 and June 2011 near the Cape Verde Ocean Observatory (CVOO) in the eastern tropical North Atlantic. The profiling float performed upcasts every 31 h while measuring pCO2, O2, salinity, temperature and hydrostatic pressure in the upper 200 m of the water column. In order to maintain accuracy, regular pCO2 sensor zeroings at depth and surface, as well as optode measurements in air, were performed for each profile. Through the application of data processing procedures (e.g., time-lag correction) accuracies of float-borne pCO2 measurements were greatly improved (10 – 15 μatm for water column and 5 μatm for surface measurements). O2 measurements yielded an accuracy of 2 μmol kg−1. First results of this pilot study show the possibility of using profiling floats as a platform for detailed and unattended observations of the marine carbon and oxygen cycle dynamics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: The potential of a continuous wave cavity ringdown spectrometer for monitoring the isotope ratio 13CO2/12CO2 and the partial pressure pCO2 of CO2 dissolved in water was thoroughly analyzed by quantitative measurements. Running calibration gas standards under typical operation conditions, a relative accuracy of D(d13C[CO2]) = ±0.1‰ with 120 min averaging time has been demonstrated. Absolute uncertainties were determined to be D(d13C[CO2]) = ±0.2‰ and D(xCO2) = ±0.5 ppmv. No principle problems were encountered when using the instrument in combination with a water-air equilibration setup. By contrast, when performing measurements of CO2 in gas matrices with a composition different from that of ambient air, pressure broadening linewidth effects induced significant errors in both d13C(CO2) and xCO2 values. These effects, which compromise the accessible accuracy in environmental studies, can be quantitatively taken into account by using a spectroscopically based correction procedure. Relying on linewidth analysis, the instrument was shown to be capable of continuous and simultaneous measurement of d13C(CO2), pCO2, as well as water content and O2 supersaturation, and thus holds the potential for online monitoring of these quantities aboard research vessels.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Atmospheric and Oceanic Technology, 32 . pp. 2305-2317.
    Publication Date: 2020-08-04
    Description: We investigated the effect of hydrostatic pressure of up to 6000 dbar on Aanderaa and Sea-Bird oxygen optodes both in the laboratory and in the field. The overall pressure response is a reduction in the O2 reading by 3 – 4 % per 1000 dbar which is closely linear with pressure and increases with temperature. Closer inspection reveals two superimposed processes with opposite effect: an O2-independent pressure response on the luminophore which increases optode O2 readings and an O2-dependent change in luminescence quenching which decreases optode O2 readings. The latter process dominates and is mainly due to a shift in the equilibrium between sensing membrane and sea water under elevated pressures. If only the dominant O2-dependent process is considered, Aanderaa and Sea-Bird optodes differ in their pressure response. Compensation of the O2-independent process, however, yields a uniform O2 dependence for Aanderaa optodes with standard foil and fast-response foil as well as Sea-Bird optodes. A new scheme to calculate optode O2 from raw data is proposed to account for the two processes. The overall uncertainty of the optode pressure correction amounts to 0.3 % per 1000 dbar, mainly due to variability between sensors.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-23
    Description: Die Aufgaben des Fraunhofer IGD im Rahmen des Projektes FLEXMOT waren die Entwicklung von Modulen für den Datenempfang, die Datenverwaltung und die Datenvisualisierung. Seit der gemeinsamen Festlegung durch alle Projektpartner im Konsortialmeeting am 29.10.2013 zeichnete das Fraunhofer IGD auch für das Gesamtprojektmanagement verantwortlich. Dies beinhaltete die organisatorischen und koordinierenden Aufgaben innerhalb des Konsortiums. Das Vorhaben wurde vor dem Hintergrund gestartet, dass durch die wachsende Expansion der Offshore-Exploration der Öl & Gas-Industrie, dem wachsenden gesellschaftlichen Umweltbewusstsein und Großunfällen wie dem Macondo-Blowout 2010 im Golf von Mexiko (Deep Horizon Unglück) offenbar wurde, wie groß der Bedarf für Umweltmonitoring-Technik ist, die besser und schneller einsetzbar, rekonfigurierbar und benutzbar sind (modulares Grundkonzept, geringe Rüstzeiten, lange Standzeiten) und zugleich größere Bereiche abdecken und eine schnelle Datenverfügbarkeit bieten. Daher initiierte der Hersteller von Gas-Sensorik Contros GmbH aus Kiel, der über entsprechendes Branchen-KnowHow und Kontakte im Öl&Gas-Bereich verfügte, zusammen mit den Unternehmen Oktopus GmbH und LEONI Special Cables GmbH und den Wissenschaftspartnern GEOMAR (Kiel) und Fraunhofer IGD (Rostock) das Projekt FlexMoT. Durch dieses Konsortium war sichergestellt, dass alle Bereiche (Mechanik, Sensorik, Prozess-KnowHow, Software für Datenmanagement und -auswertung und wissenschaftliche Unterwasser-Expertise) im Projekt vorhanden waren. Zudem war der anvisierte industrielle Markt für funktionierende und langzeittaugliche Monitoringinstrumente aufgrund der hohen Ölpreise sehr vielversprechend. Ziel war es, ein entsprechendes flexibles und modulares System zu entwickeln, welches die entscheidenden Schwächen bisheriger System umgeht und auch für den Einsatz durch nichtwissenschaftliche Anwender (Industriekunden) geeignet ist. Im Projekt sollte zum einen eine Erprobung der Entwicklungen auf ihre Unterwasser- und Einsatztauglichkeit hin stattfinden. Zum andere sollte die Funktionstüchtigkeit des Gesamtsystems nachgewiesen werden. Für diese Feldtests war es notwendig, mit einem geeigneten Schiff im angestrebten Einsatzumfeld, der Nordsee, und in typischen Wassertiefen der Kontinentalschelf-Offshore-Förderung zu testen. Das GEOMAR organisierte und stellte dafür das Forschungsschiff FS ALKOR und Schiffszeiten sowie wissenschaftliches Equipment für die Referenzmessungen zur Verfügung.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...