GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Nature Publishing Group (NPG)  (2)
  • AMS (American Meteorological Society)  (1)
  • Academic Press  (1)
  • American Meteorological Society  (1)
  • Macmillan Magazines Ltd.  (1)
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillan Magazines Ltd.
    Nature 400 (1999), S. 440-443 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Despite the central role of the oceans in the global hydrological cycle, direct observations of precipitation over the oceans are too sparse to infer global patterns of variability. For the regions of water-mass formation (the high latitudes), however, it is possible to obtain indirect ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Academic Press
    In:  International Geophysics Series, 103 . Academic Press, San Diego, USA; London, UK, 868 pp. 2. ISBN 978-0-12-391851-2
    Publication Date: 2013-12-20
    Type: Book , PeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-07-31
    Description: Nature Methods 10, 741 (2013). doi:10.1038/nmeth.2532 Authors: Ari E Friedland, Yonatan B Tzur, Kevin M Esvelt, Monica P Colaiácovo, George M Church & John A Calarco We report the use of clustered, regularly interspaced, short palindromic repeats (CRISPR)-associated endonuclease Cas9 to target genomic sequences in the Caenorhabditis elegans germ line using single-guide RNAs that are expressed from a U6 small nuclear RNA promoter. Our results demonstrate that targeted, heritable genetic alterations can be achieved in C. elegans, providing a convenient and effective approach for generating loss-of-function mutants.
    Print ISSN: 1548-7091
    Electronic ISSN: 1548-7105
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: The Earth system is accumulating energy due to human-induced activities. More than 90% of this energy has been stored in the ocean as heat since 1970, with similar to 60% of that in the upper 700 m. Differences in upper-ocean heat content anomaly (OHCA) estimates, however, exist. Here, we use a dataset protocol for 1970-2008-with six instrumental bias adjustments applied to expendable bathythermograph (XBT) data, and mapped by six research groups-to evaluate the spatiotemporal spread in upper OHCA estimates arising from two choices: 1) those arising from instrumental bias adjustments and 2) those arising from mathematical (i.e., mapping) techniques to interpolate and extrapolate data in space and time. We also examined the effect of a common ocean mask, which reveals that exclusion of shallow seas can reduce global OHCA estimates up to 13%. Spread due to mapping method is largest in the Indian Ocean and in the eddy-rich and frontal regions of all basins. Spread due to XBT bias adjustment is largest in the Pacific Ocean within 30 degrees N-30 degrees S. In both mapping and XBT cases, spread is higher for 1990-2004. Statistically different trends among mapping methods are found not only in the poorly observed Southern Ocean but also in the well-observed northwest Atlantic. Our results cannot determine the best mapping or bias adjustment schemes, but they identify where important sensitivities exist, and thus where further understanding will help to refine OHCA estimates. These results highlight the need for further coordinated OHCA studies to evaluate the performance of existing mapping methods along with comprehensive assessment of uncertainty estimates.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-05-21
    Description: Ecogenomic sensor reveals controls on N2-fixing microorganisms in the North Pacific Ocean The ISME Journal 8, 1175 (June 2014). doi:10.1038/ismej.2013.244 Authors: Julie C Robidart, Matthew J Church, John P Ryan, François Ascani, Samuel T Wilson, Deniz Bombar, Roman Marin, Kelvin J Richards, David M Karl, Christopher A Scholin & Jonathan P Zehr
    Keywords: autonomous sensingbiosensorsdiazotrophsmicrobial oceanographynitrogen fixationtime-series
    Print ISSN: 1751-7362
    Electronic ISSN: 1751-7370
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-09-14
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 35(2), (2022): 851–875, https://doi.org/10.1175/JCLI-D-20-0603.1.
    Description: The Earth system is accumulating energy due to human-induced activities. More than 90% of this energy has been stored in the ocean as heat since 1970, with ∼60% of that in the upper 700 m. Differences in upper-ocean heat content anomaly (OHCA) estimates, however, exist. Here, we use a dataset protocol for 1970–2008—with six instrumental bias adjustments applied to expendable bathythermograph (XBT) data, and mapped by six research groups—to evaluate the spatiotemporal spread in upper OHCA estimates arising from two choices: 1) those arising from instrumental bias adjustments and 2) those arising from mathematical (i.e., mapping) techniques to interpolate and extrapolate data in space and time. We also examined the effect of a common ocean mask, which reveals that exclusion of shallow seas can reduce global OHCA estimates up to 13%. Spread due to mapping method is largest in the Indian Ocean and in the eddy-rich and frontal regions of all basins. Spread due to XBT bias adjustment is largest in the Pacific Ocean within 30°N–30°S. In both mapping and XBT cases, spread is higher for 1990–2004. Statistically different trends among mapping methods are found not only in the poorly observed Southern Ocean but also in the well-observed northwest Atlantic. Our results cannot determine the best mapping or bias adjustment schemes, but they identify where important sensitivities exist, and thus where further understanding will help to refine OHCA estimates. These results highlight the need for further coordinated OHCA studies to evaluate the performance of existing mapping methods along with comprehensive assessment of uncertainty estimates.
    Description: AS is supported by a Tasmanian Graduate Research Scholarship, a CSIRO-UTAS Quantitative Marine Science top-up, and by the Australian Research Council (ARC) (CE170100023; DP160103130). CMD was partially supported by ARC (FT130101532) and the Natural Environmental Research Council (NE/P019293/1). RC was supported through funding from the Earth Systems and Climate Change Hub of the Australian Government’s National Environmental Science Program. TB is supported by the Climate Observation and Monitoring Program, National Oceanic and Atmosphere Administration, U.S. Department of commerce. GCJ and JML are supported by NOAA Research and the NOAA Ocean Climate Observation Program. This is PMEL contribution number 5065. JAC is supported by the Centre for Southern Hemisphere Oceans Research (CSHOR), jointly funded by the Qingdao National Laboratory for Marine Science and Technology (QNLM, China) and the Commonwealth Scientific and Industrial Research Organization (CSIRO, Australia) and Australian Research Council’s Discovery Project funding scheme (project DP190101173). The research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). Data used in this study are available on request.
    Keywords: Bias ; Interpolation schemes ; In situ oceanic observations ; Uncertainty ; Oceanic variability ; Trends
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...