GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AMER SOC LIMNOLOGY OCEANOGRAPHY  (1)
  • Copernicus Publications (EGU)  (1)
  • 1
    Publication Date: 2024-02-07
    Description: Biogeochemical cycling of carbon (C) and nitrogen (N) in the ocean depends on both the composition and activity of underlying biological communities and on abiotic factors. The Southern Ocean is encircled by a series of strong currents and fronts, providing a barrier to microbial dispersion into adjacent oligotrophic gyres. Our study region straddles the boundary between the nutrient-rich Southern Ocean and the adjacent oligotrophic gyre of the South Indian Ocean, providing an ideal region to study changes in microbial productivity. Here, we measured the impact of C- and N- uptake on microbial community diversity, contextualized by hydrographic factors and local physico-chemical conditions across the Southern Ocean and South Indian Ocean. We observed that contrasting physico-chemical characteristics led to unique microbial diversity patterns, with significant correlations between microbial alpha diversity and primary productivity (PP). However, we detected no link between specific PP (PP normalized by chlorophyll a concentration) and microbial alpha and beta diversity. Prokaryotic alpha and beta diversity were correlated with biological N2 fixation, itself a prokaryotic process, and we detected measurable N2 fixation to 60° S. While regional water masses have distinct microbial genetic fingerprints in both the eukaryotic and prokaryotic fractions, PP and N2 fixation vary more gradually and regionally. This suggests that microbial phylogenetic diversity is more strongly bounded by physical oceanographic features, while microbial activity responds more to chemical factors. We conclude that concomitant assessments of microbial diversity and activity is central in understanding the dynamics and complex responses of microorganisms to a changing ocean environment.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-01-20
    Description: Mesoscale eddies may drive a significant component of cross-shelf transport important in the ecology of shelf ecosystems and adjacent boundary currents. The Leeuwin Current in the eastern Indian Ocean becomes unstable in the austral autumn triggering the formation of eddies. We hypothesized that eddy formation represented the major driver of cross-shelf transport during the autumn. Acoustic Doppler Current Profiler profiles confirmed periodic offshore movement of 2 Sv of shelf waters into the forming eddy from the shelf, carrying a load of organic particles (〉0.06 mm). The gap between inflow and outflow then closed, such that the eddy became isolated from further direct input of shelf waters. Drifter tracks supported an anticyclonic surface flow peaking at the eddy perimeter and decreasing in velocity at the eddy center. Oxygen and nutrient profiles suggested rapid remineralization of nitrate mid-depth in the isolated water mass as it rotated, with a total drawdown of oxygen of 3.6 mol m22 to 350 m. Depletion of oxygen, and release of nitrate, occurred on the timescale of 1 week. We suggest that N supply and N turnover are rapid in this system, such that nitrate is acting primarily as a regenerated nutrient rather than as a source of new nitrogen. We hypothesize that sources of eddy particulate C and N could include particles sourced from coastal primary producers within 500 km such as macrophytes and seagrasses known to produce copious detritus, which is prone to resuspension and offshore transport.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...