GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-17
    Description: Clouds play an important role in Arctic amplification. This term represents the recently observed enhanced warming of the Arctic relative to the global increase of near-surface air temperature. However, there are still important knowledge gaps regarding the interplay between Arctic clouds and aerosol particles, and surface properties, as well as turbulent and radiative fluxes that inhibit accurate model simulations of clouds in the Arctic climate system. In an attempt to resolve this so-called Arctic cloud puzzle, two comprehensive and closely coordinated field studies were conducted: the Arctic Cloud Observations Using Airborne Measurements during Polar Day (ACLOUD) aircraft campaign and the Physical Feedbacks of Arctic Boundary Layer, Sea Ice, Cloud and Aerosol (PASCAL) ice breaker expedition. Both observational studies were performed in the framework of the German Arctic Amplification: Climate Relevant Atmospheric and Surface Processes, and Feedback Mechanisms (AC)3 project. They took place in the vicinity of Svalbard, Norway, in May and June 2017. ACLOUD and PASCAL explored four pieces of the Arctic cloud puzzle: cloud properties, aerosol impact on clouds, atmospheric radiation, and turbulent dynamical processes. The two instrumented Polar 5 and Polar 6 aircraft; the icebreaker Research Vessel (R/V) Polarstern; an ice floe camp including an instrumented tethered balloon; and the permanent ground-based measurement station at Ny-Ålesund, Svalbard, were employed to observe Arctic low- and mid-level mixed-phase clouds and to investigate related atmospheric and surface processes. The Polar 5 aircraft served as a remote sensing observatory examining the clouds from above by downward-looking sensors; the Polar 6 aircraft operated as a flying in situ measurement laboratory sampling inside and below the clouds. Most of the collocated Polar 5/6 flights were conducted either above the R/V Polarstern or over the Ny-Ålesund station, both of which monitored the clouds from below using similar but upward-looking remote sensing techniques as the Polar 5 aircraft. Several of the flights were carried out underneath collocated satellite tracks. The paper motivates the scientific objectives of the ACLOUD/PASCAL observations and describes the measured quantities, retrieved parameters, and the applied complementary instrumentation. Furthermore, it discusses selected measurement results and poses critical research questions to be answered in future papers analyzing the data from the two field campaigns.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AMER METEOROLOGICAL SOC
    In:  EPIC3Journal of the Atmospheric Sciences, AMER METEOROLOGICAL SOC, 77(8), pp. 2687-2716, ISSN: 0022-4928
    Publication Date: 2020-07-20
    Description: Climate models still have deficits in reproducing the surface energy and momentum budgets in Arctic regions. One of the reasons is that currently used transfer coefficients occurring in parameterizations of the turbulent fluxes are based on stability functions derived from measurements over land and not over sea ice. An improved parameterization is developed using the Monin–Obukhov similarity theory (MOST) and corresponding stability functions that reproduce measurements over sea ice obtained during the Surface Heat Budget of the Arctic Ocean (SHEBA) campaign. The new stability functions for the stable surface layer represent a modification of earlier ones also based on SHEBA measurements. It is shown that the new functions are superior to the former ones with respect to the representation of the measured relationship between the MOST stability parameter and the bulk Richardson number. Nevertheless, the functions fulfill the same criteria of applicability as the earlier functions and contain, as an extension, a dependence on the neutral-limit turbulent Prandtl number. Applying the new functions we develop an efficient noniterative parameterization of the near-surface turbulent fluxes of momentum and heat with transfer coefficients as a function of the bulk Richardson number (Rib) and roughness parameters. A hierarchy of transfer coefficients is recommended for weather and climate models. They agree better with SHEBA data for strong stability (Rib 〉 0.1) than previous parameterizations and they agree well with those based on the Businger–Dyer functions in the range Rib 〈 0.1.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-06-19
    Description: One of the most intense air mass transformations on Earth happens when cold air flows from frozen surfaces to much warmer open water in cold-air outbreaks (CAOs), a process captured beautifully in satellite imagery. Despite the ubiquity of the CAO cloud regime over high-latitude oceans, we have a rather poor understanding of its properties, its role in energy and water cycles, and its treatment in weather and climate models. The Cold-air Outbreaks in the Marine Boundary Layer Experiment (COMBLE) was conducted to better understand this regime and its representation in models. COMBLE aimed to examine the relations between surface fluxes, boundary-layer structure, aerosol, cloud and precipitation properties, and mesoscale circulations in marine CAOs. Processes affecting these properties largely fall in a range of scales where boundary-layer processes, convection, and precipitation are tightly coupled, which makes accurate representation of the CAO cloud regime in numerical weather prediction and global climate models most challenging. COMBLE deployed an Atmospheric Radiation Measurement Mobile Facility at a coastal site in northern Scandinavia (69°N), with additional instruments on Bear Island (75°N), from December 2019 to May 2020. CAO conditions were experienced 19% (21%) of the time at the main site (on Bear Island). A comprehensive suite of continuous in situ and remote sensing observations of atmospheric conditions, clouds, precipitation, and aerosol were collected. Because of the clouds’ well-defined origin, their shallow depth, and the broad range of observed temperature and aerosol concentrations, the COMBLE dataset provides a powerful modeling test bed for improving the representation of mixed-phase cloud processes in large-eddy simulations and large-scale models.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-07-19
    Description: 〈jats:p〉Abstract. Airborne in situ cloud measurements were carried out over the northern Fram Strait between Greenland and Svalbard in spring 2019 and summer 2020. In total, 811 min of low-level cloud observations were performed during 20 research flights above the sea ice and the open Arctic ocean with the Polar 5 research aircraft of the Alfred Wegener Institute. Here, we combine the comprehensive in situ cloud data to investigate the distributions of particle number concentration N, effective diameter Deff, and cloud water content CWC (liquid and ice) of Arctic clouds below 500 m altitude, measured at latitudes between 76 and 83∘ N. We developed a method to quantitatively derive the occurrence probability of their thermodynamic phase from the combination of microphysical cloud probe and Polar Nephelometer data. Finally, we assess changes in cloud microphysics and cloud phase related to ambient meteorological conditions in spring and summer and address effects of the sea ice and open-ocean surface conditions. We find median N from 0.2 to 51.7 cm−3 and about 2 orders of magnitude higher N for mainly liquid clouds in summer compared to ice and mixed-phase clouds measured in spring. A southerly flow from the sea ice in cold air outbreaks dominates cloud formation processes at temperatures mostly below −10 ∘C in spring, while northerly warm air intrusions favor the formation of liquid clouds at warmer temperatures in summer. Our results show slightly higher N in clouds over the sea ice compared to the open ocean, indicating enhanced cloud formation processes over the sea ice. The median CWC is higher in summer (0.16 g m−3) than in spring (0.06 g m−3), as this is dominated by the available atmospheric water content and the temperatures at cloud formation level. We find large differences in the particle sizes in spring and summer and an impact of the surface conditions, which modifies the heat and moisture fluxes in the boundary layer. By combining microphysical cloud data with thermodynamic phase information from the Polar Nephelometer, we find mixed-phase clouds to be the dominant thermodynamic cloud phase in spring, with a frequency of occurrence of 61 % over the sea ice and 66 % over the ocean. Pure ice clouds exist almost exclusively over the open ocean in spring, and in summer the cloud particles are most likely in the liquid water state. The comprehensive low-level cloud data set will help us to better understand the role of clouds and their thermodynamic phase in the Arctic radiation budget and to assess the performance of global climate models in a region of the world with the strongest anthropogenic climate change. 〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...