GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Nature Publishing Group  (3)
  • Elsevier  (2)
  • AMER GEOPHYSICAL UNION  (1)
  • John Wiley & Sons Ltd  (1)
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 450 (2007), S. 491-492 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Marine phytoplankton are major players in the carbon cycle, accounting for about 50% of the global biological uptake of carbon dioxide. Near the ocean surface, these single-celled organisms use light energy to convert CO2 into organic molecules for building cellular structures and ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 437 (2005), S. 349-355 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The way that nutrients cycle through atmospheric, terrestrial, oceanic and associated biotic reservoirs can constrain rates of biological production and help structure ecosystems on land and in the sea. On a global scale, cycling of nutrients also affects the concentration of atmospheric carbon ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature Geoscience, 3 (6). pp. 412-416.
    Publication Date: 2017-12-21
    Description: The elemental stoichiometry of sea water and particulate organic matter is remarkably similar. This observation led Redfield to hypothesize that the oceanic ratio of nitrate to phosphate is controlled by the remineralization of phytoplankton biomass1. The Redfield ratio is used universally to quantitatively link the marine nitrogen and phosphorus cycles in numerous biogeochemical applications2,3,4. Yet, empirical and theoretical studies show that the ratio of nitrogen to phosphorus in phytoplankton varies greatly with taxa5,6 and growth conditions7,8,9. Here we present a dynamic five-box ecosystem model showing that non-Redfield utilization of dissolved nitrogen and phosphorus by non-nitrogen-fixing phytoplankton controls the magnitude and distribution of nitrogen fixation. In our simulations, systems dominated by rapidly growing phytoplankton with low nitrogen to phosphorus uptake ratios reduce the phosphorus available for nitrogen fixation. In contrast, in systems dominated by slow-growing phytoplankton with high nitrogen to phosphorus uptake ratios nitrogen deficits are enhanced, and nitrogen fixation is promoted. We show that estimates of nitrogen fixation are up to fourfold too high when non-Redfield uptake stoichiometries are ignored. We suggest that the relative abundance of fast- and slow-growing phytoplankton controls the amount of new nitrogen added to the ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-01-31
    Description: Highlights • Frequent sediment resuspension may have buffered D-Fe released from shelf sediments. • 228Ra was used to estimate trace element fluxes from the Chukchi shelf sediments. • The estimated sediment 228Ra flux ranks among the highest reported globally. • About 10–25% of the Chukchi shelf sediment Fe flux is exported to the Arctic Ocean. The Chukchi Sea is a primary site for shelf-ocean exchange in the Arctic region and modifies Pacific-sourced water masses as they transit via the Bering Strait into the Arctic Ocean. The aim of this study was to use radium and trace metal distributions to improve our understanding of biogeochemical cycles in the Bering and Chukchi Seas, and evaluate their potential response to future changes in the Arctic. We investigated the distributions of dissolved and total dissolvable trace metals (Cd, Fe, Ni, Cu, Zn, Mn, Co, and Pb) in the Bering and Chukchi Seas during spring. In addition, the long-lived radium isotopes (226Ra and 228Ra) were measured as tracers of benthic trace metal inputs. Trace metal concentrations, especially Fe and Mn, were highly elevated in Chukchi shelf waters compared with the open Arctic Ocean and Bering Strait. Trace metal, nutrient, and Ra patterns suggested that Fe, Mn, and Co concentrations were predominantly controlled by reductive benthic inputs, whereas the other trace metals were influenced by biological uptake and release processes. We propose that Fe, Mn, and Co in the Chukchi Sea are supplied from shelf sediments during winter overturning, and we combine the 228Ra fluxes with the distributions of Fe, Mn, and Co to provide a first estimate of their benthic fluxes in the region. The average benthic flux of 228Ra was 1.49 × 108 atoms m−2 d−1, which is among the highest rates reported globally. Estimated dissolved Fe (D-Fe) flux from the sediments was 2.5 μmol m−2 d−1, whereas D-Mn and D-Co fluxes were 8.0 μmol m−2 d−1 and 0.2 μmol m−2 d−1, respectively. The off-shelf transport of D-Fe to the Arctic Ocean is estimated to be about 10–25% of the benthic Fe flux, with the remainder retained on the shelf due to scavenging and/or phytoplankton uptake. Our results highlight the importance of the Chukchi Sea as a major source of the micro-nutrients to the Arctic Ocean, thereby supporting primary production. Long-term changes in factors that affect cross-shelf mixing, such as the observed reduction in ice cover, may therefore enhance shelf nutrient inputs and primary productivity in the Arctic.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-07-14
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Deep Sea Research Part I: Oceanographic Research Papers 102 (2015): 43-54, doi:10.1016/j.dsr.2015.04.004.
    Description: Over the past few decades, sea ice retreat during summer has been enhanced in the Pacific sector of the Arctic basin, likely due in part to increasing summertime heat flux of Pacific-origin water from the Bering Strait. Barrow Canyon, in the northeast Chukchi Sea, is a major conduit through which the Pacific-origin water enters the Arctic basin. This paper presents results from 6 repeat high-resolution shipboard hydrographic/velocity sections occupied across Barrow Canyon in summer 2010. The different Pacific water masses feeding the canyon – Alaskan coastal water (ACW), summer Bering Sea water (BSW), and Pacific winter water (PWW) – all displayed significant intra-seasonal variability. Net volume transports through the canyon were between 0.96 and 1.70 Sv poleward, consisting of 0.41–0.98 Sv of warm Pacific water (ACW and BSW) and 0.28–0.65 Sv of PWW. The poleward heat flux also varied strongly, ranging from 8.56 TW to 24.56 TW, mainly due to the change in temperature of the warm Pacific water. Using supplemental mooring data from the core of the warm water, along with wind data from the Pt. Barrow weather station, we derive and assess a proxy for estimating heat flux in the canyon for the summer time period, which is when most of the heat passes northward towards the basin. The average heat flux for 2010 was estimated to be 3.34 TW, which is as large as the previous record maximum in 2007. This amount of heat could melt 315,000 km2 of 1-meter thick ice, which likely contributed to significant summer sea ice retreat in the Pacific sector of the Arctic Ocean.
    Description: MI, TK, YF, KO and DS were supported by Green Network of Excellence Program (GRENE Program), Arctic Climate Change Research Project ‘Rapid Change of the Arctic Climate System and its Global Influences’ by Ministry of Education, Culture, Sports, Science and Technology Japan. RP was supported by grant ARC-1203906 from the US National Science Foundation. CA was supported by grant ARC-1023331 from the US National Science Foundation and by the Cooperative Institute for the North Atlantic Region (NOAA Cooperative AgreementNA09OAR4320129) with funds provided by the US National Oceanographic and Atmospheric Administration through an Interagency Agreement between the US Bureau of Ocean and Energy Management and the National Marine Mammal Laboratory. SV was supported by the Department of Fisheries and Oceans Canada. MI and TK were supported by the Japan Agency for Marine-Earth Science and Technology. MI, TK, YF and KO were supported by Grant no. 2014-23 from Joint Research Program of the Institute of Low Temperature Science, Hokkaido University. YF and KO were supported by grants-in-aid 20221001 for scientific research from the Ministry of Education, Culture, Sports, Science and Technology of Japan. JTM was supported by grant PLR-1041102 from the US National Science Foundation.
    Keywords: Polar oceanography ; Arctic Ocean ; Chukchi Sea ; Heat fluxes ; Volume transports ; Water properties
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AMER GEOPHYSICAL UNION
    In:  EPIC3Global Biogeochemical Cycles, AMER GEOPHYSICAL UNION, 27, pp. 1-10, ISSN: 0886-6236
    Publication Date: 2019-07-17
    Description: We combined data sets of measured sedimentary calcium carbonate (CaCO3) and satellite-derived pelagic primary production to parameterize the relation between CaCO3 content on the Antarctic shelves and primary production in the overlying water column. CaCO3 content predicted in this way was in good agreement with the measured data. The parameterization was then used to chart CaCO3 content on the Antarctic shelves all around the Antarctic, using the satellite-derived primary production. The total inventory of CaCO3 in the bioturbated layer of Antarctic shelf sediments was estimated to be 0.5 Pg C. This quantity is comparable to the total CO2 uptake by the Southern Ocean in only one to a few years (dependent on the uptake estimate and area considered), indicating that the dissolution of these carbonates will neither delay ocean acidification in this area nor augment the Southern Ocean CO2 uptake capacity.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...