GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AMER CHEMICAL SOC  (1)
  • PANGAEA  (1)
Document type
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Schwedt, Anne; Seidel, Michael; Dittmar, Thorsten; Simon, Meinhard; Bondarev, Vladimir N; Romano, Stefano; Lavik, Gaute; Schulz-Vogt, Heide N (2015): Substrate use of Pseudovibrio sp. growing in ultra-oligotrophic seawater. PLoS ONE, 10(3), e0121675, https://doi.org/10.1371/journal.pone.0121675
    Publication Date: 2023-09-07
    Description: Marine planktonic bacteria often live in habitats with extremely low concentrations of dissolved organic matter (DOM). To study the use of trace amounts of DOM by the facultatively oligotrophic Pseudovibrio sp. FO-BEG1, we investigated the composition of artificial and natural seawater before and after growth. We determined the concentrations of dissolved organic carbon (DOC), total dissolved nitrogen (TDN), free and hydrolysable amino acids, and the molecular composition of DOM by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS). The DOC concentration of the artificial seawater we used for cultivation was 4.4 µmol C/l, which was eight times lower compared to the natural oligotrophic seawater we used for parallel experiments (36 µmol C/l). During the three-week duration of the experiment, cell numbers increased from 40 cells/ml to 2x10**4 cells/ml in artificial and to 3x10**5 cells/ml in natural seawater. No nitrogen fixation and minor CO2 fixation (〈 1% of cellular carbon) was observed. Our data show that in both media, amino acids were not the main substrate for growth. Instead, FT-ICR-MS analysis revealed usage of a variety of different dissolved organic molecules, belonging to a wide range of chemical compound groups, also containing nitrogen. The present study shows that marine heterotrophic bacteria are able to proliferate with even lower DOC concentrations than available in natural ultra-oligotrophic seawater, using unexpected organic compounds to fuel their energy, carbon and nitrogen requirements.
    Keywords: Elemental nitrogen oxidation A new bacterial process in the nitrogen cycle; ELNOX; Event label; EXP; Experiment; Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS); Hydrogen/Carbon ratio; Mass-to-charge ratio; Molecular formula; Oxygen/Carbon ratio; Peak intensity; Pseudovibrio_ASW_EXP; Pseudovibrio_SW_EXP; Standard deviation; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 9716 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AMER CHEMICAL SOC
    In:  EPIC3Environmental Science & Technology, AMER CHEMICAL SOC, 54(1), pp. 195-206, ISSN: 0013-936X
    Publication Date: 2020-03-13
    Description: About 250 Tg of dissolved organic carbon are annually transported from inland waters to coastal systems making rivers a critical link between terrestrial and ocean carbon pools. During transport through fluvial systems, various biogeochemical processes selectively remove or transform labile material, effectively altering the composition of dissolved organic matter (DOM) exported to the ocean. The river continuum concept (RCC) has been historically used as a model to predict the fate and quality of organic matter along a river continuum. However, the conversion of natural landscapes for urban and agricultural practices can also alter the sources and quality of DOM exported from fluvial systems, and the RCC may be significantly limited in predicting DOM quality in anthropogenically impacted watersheds. Here, we studied DOM dynamics in the Altamaha River watershed in Georgia, USA, a fluvial system where headwater streams are highly impacted by anthropogenic activities. The primary goal of this study was to quantitatively assess the importance of both the RCC and land use as environmental drivers controlling DOM composition. Land use was a stronger predictor of spatial variation (∼50%) in DOM composition defined by both excitation–emission matrix–parallel factor analysis (EEM–PARAFAC) and ultrahigh-resolution mass spectrometry. This is compared to an 8% explained variability that can be attributed to the RCC. This study highlights the importance of incorporating land use among other controls into the RCC to better predict the fate and quality of DOM exported from terrestrial to coastal systems.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...