GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE INC
    In:  EPIC3Comparative Biochemistry and Physiology C-Toxicology & Pharmacology, ELSEVIER SCIENCE INC, 162, pp. 43-50, ISSN: 1532-0456
    Publication Date: 2014-08-25
    Description: After 96 h goldfish exposure to 10, 25 or 50 mg/L of Ni2 + no Ni accumulation was found in the brain, but lipid peroxide concentration was by 44% elevated in the brain, whereas carbonyl protein content was by 45–45% decreased in the heart. High molecular mass thiol concentration was enhanced by 30% in the heart, while in the brain low molecular mass thiol concentration increased by 28–88%. Superoxide dismutase activity was by 27% and 35% increased in the brain and heart, respectively. Glutathione peroxidase activity was lowered to 38% and 62% of control values in both tissues, whereas catalase activity was increased in the heart by 15–45%, accompanied by 18–29% decreased glutathione reductase activity. The disturbances of free radical processes in the brain and heart might result from Ni-induced injuries to other organs with more prominent changes in the heart, because of close contact of this organ with blood, whereas the blood–brain barrier seems to protect the brain.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-11-27
    Description: The Antarctic Peninsula (AP) is one of three places on Earth that registered the most intense warming in the last 50 years, almost five times the global mean. The cryosphere was rapidly affected registering the largest ice-shelves collapses ever observed and 87 % of glaciers in retreat. Ecosystem responses, although increasingly predicted, have been mainly reported for pelagic systems. However, and despite that most Antarctic species being benthic, registered responses in the Antarctic benthos were restricted to few species and major effects at community level are unknown. This is probably due to the scarcity of baselines against which to assess change. We performed repeat surveys of coastal benthos in 1994, 1998 and 2010 analyzing community structure and environmental variables at King George Island, Antarctica. Here we report a marked shift in an Antarctic benthic community that can be linked to ongoing climate change. However, rather than temperature as the primary factor, we highlight the resulting increased sediment run-off, triggered by glacier retreat as the potential causal factor. The sudden shift from a “filter feeders-ascidian domination” to a “mixed assemblage” suggests that thresholds (e.g. of tolerable sedimentation) and alternative equilibrium states, depending on the reversibility of the changes, could be possible traits in this ecosystem. Sedimentation processes will be increasing under the current scenario of glacier retreat and attention needs to be paid to its effects along the AP.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE INC
    In:  EPIC3Comparative Biochemistry and Physiology C-Toxicology & Pharmacology, ELSEVIER SCIENCE INC, 162, pp. 62-69, ISSN: 1532-0456
    Publication Date: 2014-04-28
    Description: The intracellular ubiquitin-proteasome system is a key regulator of cellular processes involved in the controlled degradation of short-living or malfunctioning proteins. Certain diseases and cellular dysfunctions are known to arise from the disruption of proteasome pathways. Trace metals are recognized stressors of the proteasome system in vertebrates and plants, but their effects on the proteasome of invertebrates are not well understood. Since marine invertebrates, and particularly benthic crustaceans, can be exposed to high metal levels, we studied the effects of in vitro exposure to Hg2 +, Zn2 +, Cu2 +, and Cd2 + on the activities of the proteasome from the claw muscles of lobsters (Homarus gammarus) and crabs (Cancer pagurus). The chymotrypsin like activity of the proteasome of these two species showed different sensitivity to metals. In lobsters the activity was significantly inhibited by all metals to a similar extent. In crabs the activities were severely suppressed only by Hg2 + and Cu2 + while Zn2 + had only a moderate effect and Cd2 + caused almost no inhibition of the crab proteasome. This indicates that the proteasomes of both species possess structural characteristics that determine different susceptibility to metals. Consequently, the proteasome-mediated protein degradation in crab C. pagurus may be less affected by metal pollution than that of the lobster H. gammarus.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE INC
    In:  EPIC3Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology, ELSEVIER SCIENCE INC, 162, pp. 421-430, ISSN: 1095-6433
    Publication Date: 2019-07-16
    Description: Increase in oxidative damage and decrease in cellular maintenance is often associated with aging, but, in marine ectotherms, both processes are also strongly influenced by somatic growth, maturation and reproduction. In this study, we used a single cohort of the short-lived catarina scallop Argopecten ventricosus, to investigate the effects of somatic growth, reproduction and aging on oxidative damage parameters (protein carbonyls, TBARS and lipofuscin) and cellular maintenance mechanisms (antioxidant activity and apoptosis) in scallops, caged in their natural environment. The concentrations of protein carbonyls and TBARS increased steeply during the early period of fast growth and during reproduction in one-year-old scallops. However, oxidative damage was transient, and apoptotic cell death played a pivotal role in eliminating damage in gill, mantle and muscle tissues of young scallops. Animals were able to reproduce again in the second year, but the reduced intensity of apoptosis impaired subsequent removal of damaged cells. Fast accumulation of the age pigment lipofuscin was observed in late survivors. Reproduction had a temperature independent effect on oxygen uptake and on oxidative stress markers in first year scallops. Compared to longer-lived bivalves, A. ventricosus seems more susceptible to oxidative stress with higher tissue-specific protein carbonyl levels and fast accumulation of lipofuscin in animals surviving the first and second spawning. Superoxide dismutase activity and apoptotic cell death intensity were higher in this short-lived scallop than in longer-lived bivalves. The life strategy of this short-lived and intensely predated scallop supports rapid somatic growth and fitness as well as early maturation at young age over cellular maintenance in second year scallops.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...