GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: AIP Advances, AIP Publishing, Vol. 7, No. 9 ( 2017-09-01)
    Abstract: An eight-channel, high speed pyrometer for precise temperature measurement is designed and realized in this work. The addition of longer-wavelength channels sensitive at lower temperatures highly expands the measured temperature range, which covers the temperature of interest in shock physics from 1500K-10000K. The working wavelength range is 400-1700nm from visible light to near-infrared (NIR). Semiconductor detectors of Si and InGaAs are used as photoelectric devices, whose bandwidths are 50MHz and 150MHz respectively. Benefitting from the high responsivity and high speed of detectors, the time resolution of the pyrometer can be smaller than 10ns. By combining the high-transmittance beam-splitters and narrow-bandwidth filters, the peak spectrum transmissivity of each channel can be higher than 60%. The gray-body temperatures of NaI crystal under shock-loading are successfully measured by this pyrometer.
    Type of Medium: Online Resource
    ISSN: 2158-3226
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2017
    detail.hit.zdb_id: 2583909-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Biomicrofluidics, AIP Publishing, Vol. 8, No. 2 ( 2014-03-01)
    Abstract: Based on the Euler force induced by the acceleration of compact disk (CD)-like microfluidic chip, this paper presents a novel actuation mechanism for siphon valving. At the preliminary stage of acceleration, the Euler force in the tangential direction of CD-like chip takes the primary place compared with the centrifugal force to function as the actuation of the flow, which fills the siphon and actuates the siphon valving. The Euler force actuation mechanism is demonstrated by the numerical solution of the phase-field based mathematical model for the flow in siphon valve. In addition, experimental validation is implemented in the polymethylmethacrylate-based CD-like microfluidic chip manufactured using CO2 laser engraving technique. To prove the application of the proposed Euler force actuation mechanism, whole blood separation and plasma extraction has been conducted using the Euler force actuated siphon valving. The newly introduced actuation mechanism overcomes the dependence on hydrophilic capillary filling of siphon by avoiding external manipulation or surface treatments of polymeric material. The sacrifice for highly integrated processing in pneumatic pumping technique is also prevented by excluding the volume-occupied compressed air chamber.
    Type of Medium: Online Resource
    ISSN: 1932-1058
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2014
    detail.hit.zdb_id: 2265444-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    AIP Publishing ; 2022
    In:  Applied Physics Reviews Vol. 9, No. 4 ( 2022-12-01)
    In: Applied Physics Reviews, AIP Publishing, Vol. 9, No. 4 ( 2022-12-01)
    Abstract: The topological phenomenon has been extensively studied in condensed matter physics and has attracted much attention in many different fields. Like electrons, phonons can also be studied using critical theorems and topology concepts, giving impetus to the birth of topological phonons. Among the topological phonons, the topological nodal line phonons in crystalline materials have emerged as a new area of rapid development in both experiment and theory. Researchers have been hunting for realistic materials with nodal line phonons for the last four years. To date, however, a timely review of recent advances in topological nodal line phonons, and especially their material realization, is still lacking. Considering the classification of the nodal line states, in this review, we will first review the identification of the materials hosting the nodal line phonons with different degeneracies, different types of dispersion, and different geometric shapes in theory. Moreover, we will review and discuss the reasons for the appearance of the nodal line phonons from the viewpoint of symmetry. Second, we will review the case where the nodal line appears in the projected surface phonon states instead of the bulk phonon states. Third, we will review the experimental material realization of nodal line phonons. Finally, we will present a summary, outlook, and additional notes. We believe that this review will contribute to a more advanced understanding of topological nodal line phonons in solid materials and will offer new perspectives on this rapidly expanding field.
    Type of Medium: Online Resource
    ISSN: 1931-9401
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2022
    detail.hit.zdb_id: 2265524-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: AIP Advances, AIP Publishing, Vol. 2, No. 4 ( 2012-12-01)
    Abstract: We provide a direct measurement of the tetragonal distortion in thick GaMnAs as a function of depth by Rutherford backscattering combining with channeling. The thick GaMnAs film is tetragonally strained and the tetragonal distortion is found to be depth independent. Our finding excludes strain relaxation as the origin of the uniaxial in-plane magnetic anisotropy observed in GaMnAs.
    Type of Medium: Online Resource
    ISSN: 2158-3226
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2012
    detail.hit.zdb_id: 2583909-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    AIP Publishing ; 2013
    In:  Journal of Applied Physics Vol. 113, No. 18 ( 2013-05-14)
    In: Journal of Applied Physics, AIP Publishing, Vol. 113, No. 18 ( 2013-05-14)
    Abstract: Enhanced broadband near-infrared luminescence has been observed in Bi-doped oxyfluoride glasses excited from UV to near-infrared regions with the addition of AgCl. Enhancement factors depend greatly on excitation wavelength and maximal enhancement factor over three times occurs at the excitation wavelength around 320, 640, and 800 nm. Ag species play dual functions. The mechanism of the enhancement is discussed in depth combing the energy transfer from Ag+, molecular-like, nonplasmonic Ag species, Bi3+ and Bi2+ to near-infrared bismuth active centers, and the redox reaction of Bi species with Ag species. These results offer a valuable way to enhance the near-infrared luminescence efficiency of Bi-doped glasses, and the dual functions of Ag species may also be employed to enhance luminescence of rare-earth and transition metal ions doped materials.
    Type of Medium: Online Resource
    ISSN: 0021-8979 , 1089-7550
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2013
    detail.hit.zdb_id: 220641-9
    detail.hit.zdb_id: 3112-4
    detail.hit.zdb_id: 1476463-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    AIP Publishing ; 2021
    In:  Review of Scientific Instruments Vol. 92, No. 9 ( 2021-09-01)
    In: Review of Scientific Instruments, AIP Publishing, Vol. 92, No. 9 ( 2021-09-01)
    Abstract: Series elastic actuators (SEAs) have widely been adapted in robots where safe human–robot interaction is required for accurate and robust force control. Recent research on the SEAs has shown that the SEA with a user-defined variable stiffness possesses several advantages over the constant stiffness SEA, such as large force range and bandwidth while keeping low output impedance and high force fidelity. However, a limitation of this type of SEA is that an obvious hysteresis effect exists and the associated torque curves are nonlinear and vary with amplitudes. Conventional mathematical hysteresis models are usually developed with some kind of black-box modeling, and the model parameters are adjusted through parameter identification methods. It is challenging to tune the model parameters to match the experimental data well among inputs with different amplitudes, let alone the inverse model of the hysteresis, which is necessary to compensate the hysteresis effect in control. In this paper, a rotary SEA (rSEA) with nonlinear stiffness is proposed. A concept called “virtual deformation” is introduced to mathematically transform the nonlinear curve into a polyline hysteresis model. This eases torque estimation with respect to the deformation of the rSEA. A hysteresis compensation torque controller is implemented for precise torque control. A prototype of the rSEA was fabricated, and the experimental results verified modeling accuracy of the proposed model. Our results showed that, with the new model, the computation cost was greatly reduced while keeping the modeling accuracy almost the same compared with the nonlinear backlash model.
    Type of Medium: Online Resource
    ISSN: 0034-6748 , 1089-7623
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2021
    detail.hit.zdb_id: 209865-9
    detail.hit.zdb_id: 1472905-2
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    AIP Publishing ; 2016
    In:  Journal of Applied Physics Vol. 120, No. 5 ( 2016-08-07)
    In: Journal of Applied Physics, AIP Publishing, Vol. 120, No. 5 ( 2016-08-07)
    Abstract: In a high-current interruption, the contact surface in a vacuum interrupter might be severely damaged by constricted vacuum arcs causing a molten area on it. As a result, a protrusion will be initiated by a transient recovery voltage after current zero, enhancing the local electric field and making breakdowns occur easier. The objective of this paper is to simulate the deformation process on the molten area under a high electric field by adopting the finite element method. A time-dependent Electrohydrodynamic model was established, and the liquid-gas interface was tracked by the level-set method. From the results, the liquid metal can be deformed to a Taylor cone if the applied electric field is above a critical value. This value is correlated to the initial geometry of the liquid metal, which increases as the size of the liquid metal decreases. Moreover, the buildup time of a Taylor cone obeys the power law t = k × E−3, where E is the initial electric field and k is a coefficient related to the material property, indicating a temporal self-similar characteristic. In addition, the influence of temperature has little impact on the deformation but has great impact on electron emission. Finally, the possible reason to initiate a delayed breakdown is associated with the deformation. The breakdown does not occur immediately when the voltage is just applied upon the gap but is postponed to several milliseconds later when the tip is formed on the liquid metal.
    Type of Medium: Online Resource
    ISSN: 0021-8979 , 1089-7550
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2016
    detail.hit.zdb_id: 220641-9
    detail.hit.zdb_id: 3112-4
    detail.hit.zdb_id: 1476463-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Physics of Fluids, AIP Publishing, Vol. 35, No. 1 ( 2023-01-01)
    Abstract: As one of the most significant clean energy sources, the migration characteristics and extraction processes of coalbed methane (CBM) have been extensively studied. The structural distribution and evolutionary characteristics of reservoir fractures, as the main conduit for gas migration, significantly affect the permeability and gas production. However, few models have been able to quantitatively and accurately explore reservoir micro–macro interactions under coupled thermal-fluid–solid effects. This work develops a new highly coupled model based on the widely adopted power-law function to quantify reservoir thermal conduction effect, gas pressure evolution, reservoir deformation, in situ stress, the adsorption–desorption effect, and reservoir microstructure evolution. Three parameters are adopted to quantitatively characterize the reservoir structure: (1) fracture power index αf (to characterize the fracture density), (2) fracture length ratio rf (to characterize the fracture size), and (3) the maximum fracture length l. The results demonstrate that the fractal network is a special kind of network in the power-law length distribution. The proposed power-law seepage model is able to accurately characterize the evolution of reservoir microstructure and the impact of microevolution on extraction under multi-field coupling effects, compared to the traditional power-law model. The proposed model can provide a good theoretical and practical support for the study of CBM migration and extraction.
    Type of Medium: Online Resource
    ISSN: 1070-6631 , 1089-7666
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2023
    detail.hit.zdb_id: 1472743-2
    detail.hit.zdb_id: 241528-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    AIP Publishing ; 1993
    In:  Applied Physics Letters Vol. 63, No. 24 ( 1993-12-13), p. 3327-3329
    In: Applied Physics Letters, AIP Publishing, Vol. 63, No. 24 ( 1993-12-13), p. 3327-3329
    Abstract: Strain relaxed InGaAs/GaAs superlattices grown on GaAs(001) substrate by molecular beam epitaxy have been studied by means of double-crystal x-ray diffractometry. Theoretical simulations of the rocking curves were successfully performed by taking into account the relaxation mechanism, the tilt between the multilayer and the substrate, and the peak broadening effects. It was found that in our sample the misfit strain is relaxed on the multilayer/substrate interface. This leads to the formation of misfit dislocations on the interface with a mean linear density about 9×104 cm−1 and a tilt of 325 s. toward the [010] direction between the multilayer and the substrate.
    Type of Medium: Online Resource
    ISSN: 0003-6951 , 1077-3118
    RVK:
    Language: English
    Publisher: AIP Publishing
    Publication Date: 1993
    detail.hit.zdb_id: 211245-0
    detail.hit.zdb_id: 1469436-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Journal of Applied Physics, AIP Publishing, Vol. 125, No. 2 ( 2019-01-14)
    Abstract: In this work, we fabricated a ZnO thin film flexible UV photodetector with a room-temperature process and investigated it with an emphasis on the influence of different external stresses. The photodetector exhibited enhancing photocurrent, sensitivity, responsivity, and response range with a tensile strain. This may originate from the improving collection ability of photogenerated carriers with the change of Schottky barrier height, which is induced by the piezo-phototronic effect. The as-obtained thin film flexible photodetector belongs to the family of photoresponse-controlled optoelectronic devices and has applications in a myriad of useful ways.
    Type of Medium: Online Resource
    ISSN: 0021-8979 , 1089-7550
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2019
    detail.hit.zdb_id: 220641-9
    detail.hit.zdb_id: 3112-4
    detail.hit.zdb_id: 1476463-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...