GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AIP Publishing  (2)
Material
Publisher
  • AIP Publishing  (2)
Language
Years
  • 1
    Online Resource
    Online Resource
    AIP Publishing ; 2019
    In:  Physics of Fluids Vol. 31, No. 8 ( 2019-08-01)
    In: Physics of Fluids, AIP Publishing, Vol. 31, No. 8 ( 2019-08-01)
    Abstract: The three-dimensional flow on a plate with a V-shaped blunt leading edge (VsBLEP) is investigated numerically and experimentally at a freestream Mach number 6. A complex saddle-shaped shock front is observed on this VsBLEP under the interactions between the detached shock (DS) induced by the swept blunt leading edge and the bow shock (BS) induced by the crotch. It is demonstrated that a new type of spatial transition exists on this saddle-shaped shock front, which involves the transition of shock interactions (i.e., DS and BS) from the same family upstream of the crotch to opposite families downstream of the crotch. Moreover, this transition is quantitatively identified according to the shock-induced spanwise velocity along the inflection line between DS and BS, which is of great importance because it affects the crossflow significantly. The inward crossflow induced by the swept blunt leading edge is enhanced in the region where the DS and BS are from the same family, and the shear layers generated in this region converge gradually to the spanwise symmetry plane, which results in the formation of a streamwise counter-rotating vortex pair (CVP). In the region where the DS and BS turn to opposite families, the inward crossflow is eliminated, and a five-shock structure is identified downstream of the crotch. The CVP remains close to the spanwise symmetry plane as it trails downstream, showing a far-reaching influence on the flowfield. This study indicates that the V-shaped blunt leading edge affects the downstream flow significantly and therefore should be examined carefully in practical applications, such as in the design of an inlet cowl lip.
    Type of Medium: Online Resource
    ISSN: 1070-6631 , 1089-7666
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2019
    detail.hit.zdb_id: 1472743-2
    detail.hit.zdb_id: 241528-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    AIP Publishing ; 2019
    In:  Journal of Applied Physics Vol. 126, No. 18 ( 2019-11-14)
    In: Journal of Applied Physics, AIP Publishing, Vol. 126, No. 18 ( 2019-11-14)
    Abstract: Monolayer silicon phosphide (SiP) and germanium phosphide (GeP) are predicted to exhibit fascinating electronic characters with highly stable structures, which indicate their potential applications in future electronic technologies. By using first-principles calculations combined with the semiclassical Boltzmann transport theory, we systematically investigate the thermoelectric properties of monolayer SiP and GeP. High anisotropy is observed in both phonon and electron transport of monolayer SiP and GeP where the thermal and electrical conductivity along the xx crystal direction are smaller than those along the yy crystal direction. The lattice thermal conductivity (room temperature) along the xx crystal direction is about 11.05 W/mK for monolayer SiP and 9.48 W/mK for monolayer GeP. However, monolayer SiP and GeP possess almost isotropic Seebeck coefficient, and the room temperature values with both n- and p-type doping approach 2.9 mV/K and 2.5 mV/K, respectively. Based on the electron relaxation time estimated from the deformation potential theory, the maximum thermoelectric figure of merit of monolayer SiP and GeP with n-type doping approach 0.76 and 0.78 at 700 K, respectively. The results presented in this work shed light upon the thermoelectric performance of monolayer SiP and GeP and foreshow their potential applications in thermoelectric devices.
    Type of Medium: Online Resource
    ISSN: 0021-8979 , 1089-7550
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2019
    detail.hit.zdb_id: 220641-9
    detail.hit.zdb_id: 3112-4
    detail.hit.zdb_id: 1476463-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...