GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AIP Publishing  (2)
Material
Publisher
  • AIP Publishing  (2)
Language
Years
Subjects(RVK)
  • 1
    In: Applied Physics Letters, AIP Publishing, Vol. 120, No. 15 ( 2022-04-11)
    Abstract: Photonic synapses provide fast response, high bandwidth, and less crosstalk in neuromorphic computation as well as simulation of visual perception systems. Herein, phototransistor-based photonic synapses that can be triggered by near-infrared light are reported. The artificial synapse is based on organic heterojunction phototransistors comprising the organic polymer semiconductor PDPPBTT and inorganic SnO2. The organic semiconducting polymer PDPPBTT serves as the near-infrared light absorbing materials and transistor channel, whereas SnO2 serves as the charge trapping materials. By adopting the heterojunction architecture, generation, separation, and transport of charge carriers are optimized under near-infrared illumination and electrical gating to yield photonic synaptic properties that can be readily modulated, including the excitatory postsynaptic current and paired-pulse facilitation. The results reveal a simple and effective concept for photonic synapses in the near-infrared region and provide insights into the development of advanced visual processing, neuromorphic computation, and biological nervous systems.
    Type of Medium: Online Resource
    ISSN: 0003-6951 , 1077-3118
    RVK:
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2022
    detail.hit.zdb_id: 211245-0
    detail.hit.zdb_id: 1469436-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Biomicrofluidics, AIP Publishing, Vol. 14, No. 3 ( 2020-05-01)
    Abstract: Sample digital technology is a powerful method for absolute quantification of target molecules such as nucleic acids and proteins. The excellent sample stability and mass production capability has enabled the development of microwell array-based sample digitizing methods. However, in current microwell array chips, samples are loaded by the liquid scraping method, which requires complex manual operation and results in a low filling rate and limited hole filling uniformity. Here, we perform sample loading of a through-hole array chip by a microfluidics-driven method and design a double independent S-shaped flow channels sandwiched through-hole array chip. Because of the capillary force and capillary burst pressure, the sample flowing in the channel can be trapped into through-holes, but cannot flow through the other side. Via air flow and displacement of the remaining sample in the channel, the sample can be partitioned consistently, with zero surplus sample residue in the channel. We evaluated the actual performance of the sample-loading process: the chip enables 99.10% filling rate of 18 500 through-holes, with a grayscale coefficient of variation value of 6.03% determined from fluorescence images. In performing digital polymerase chain reaction on chip, the chip demonstrates good performance for the absolute quantification of target DNA. The simple and robust design of our chip, with excellent filling rate and microsample uniformity, indicates potential for use in a variety of sample digitization applications.
    Type of Medium: Online Resource
    ISSN: 1932-1058
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2020
    detail.hit.zdb_id: 2265444-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...