GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AIP Publishing  (28)
Material
Publisher
  • AIP Publishing  (28)
Language
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    AIP Publishing ; 2017
    In:  Review of Scientific Instruments Vol. 88, No. 3 ( 2017-03-01)
    In: Review of Scientific Instruments, AIP Publishing, Vol. 88, No. 3 ( 2017-03-01)
    Abstract: Vacuum injection casting (VIC) is important for research and development (R & D) of materials that are prone to oxidation at high temperatures, particularly metals and metallic alloys (e.g., metallic glasses and high entropy alloys). VIC in R & D laboratories often involves initial melting/alloying in a prior step, transporting the sample to a dedicated vacuum chamber, re-melting the sample in a quartz tube, and finally injecting the melt with an inert gas to a dedicated mold. Here we present a new approach to laboratory VIC that requires no sample transfer (for a variety of materials), no dedicated vacuum chamber/space nor dedicated mold, and hence provides more versatility and higher efficiency and yet lowers the capital equipment cost. Our approach takes advantage of the exceptional portability, thermal and chemical stability, and thermoplastic processability of quartz glass and uses quartz tubes for all the melting, re-melting, injection casting, and molding. In addition, our approach includes oxygen gettering to remove residual oxygen for all the steps and allows for slow or fast cooling (e.g., water quenching) upon injection. This paper focuses on the design, the procedures, and the versatile features of this new approach while also demonstrating the practical implementation of this approach and computational modeling of the heat transfer and the cooling rates for two exemplary cases. The new approach is expected to bring notable expedition to sample fabrication and materials discovery, as well as wider adoption of vacuum injection casting in materials science and condensed matter physics research laboratories.
    Type of Medium: Online Resource
    ISSN: 0034-6748 , 1089-7623
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2017
    detail.hit.zdb_id: 209865-9
    detail.hit.zdb_id: 1472905-2
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    AIP Publishing ; 2004
    In:  Journal of Applied Physics Vol. 95, No. 3 ( 2004-02-01), p. 1497-1501
    In: Journal of Applied Physics, AIP Publishing, Vol. 95, No. 3 ( 2004-02-01), p. 1497-1501
    Abstract: The field-effect mobility (FEM) in polythiophene (PT) polymer field-effect transistors (PFETs) increases with reduced channel lengths during high driving forces across the source and drain, which is contradictory to the decrease in mobility caused by short-channel effects in amorphous Si thin-film transistors. The longitudinal electric-field (across source and drain) dependence of the FE mobility is believed to create the rise in mobility once the longitudinal electric field exceeds a critical value of 105 V/cm. The high longitudinal electric field also modulates the influence of the gate bias upon the FEM in PT PFETs. With increased longitudinal electric field, the correlation between FEM and gate bias is largely enhanced.
    Type of Medium: Online Resource
    ISSN: 0021-8979 , 1089-7550
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2004
    detail.hit.zdb_id: 220641-9
    detail.hit.zdb_id: 3112-4
    detail.hit.zdb_id: 1476463-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    AIP Publishing ; 2012
    In:  Journal of Applied Physics Vol. 111, No. 6 ( 2012-03-15)
    In: Journal of Applied Physics, AIP Publishing, Vol. 111, No. 6 ( 2012-03-15)
    Abstract: Based on dielectrophoretic effect, the phase separation morphology of liquid crystal (LC) in a liquid monomer can be manipulated by a fringing field. Applying the fringing field generated from interdigitated electrode upon the LC/monomer mixture, the randomly dispersed LC droplets can be assembled to grating-like stripes. When the field is removed, the LC stripes break into tiny droplets again. This process is reversible and stable. Our results show that the surface profile of each LC stripe exhibits a lenticular shape. The response time of the LC morphology converting from droplets to stripes and from stripes to droplets is ~0.96 s. Potential applications of this controllable morphology can be found in optical communications, beam steering, imaging, and displays.
    Type of Medium: Online Resource
    ISSN: 0021-8979 , 1089-7550
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2012
    detail.hit.zdb_id: 220641-9
    detail.hit.zdb_id: 3112-4
    detail.hit.zdb_id: 1476463-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    AIP Publishing ; 2014
    In:  The Journal of Chemical Physics Vol. 140, No. 9 ( 2014-03-07)
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 140, No. 9 ( 2014-03-07)
    Abstract: The interaction between oxygen and samarium (Sm) on the well-ordered thin Al2O3 film grown on Ni3Al(111) has been investigated by X-ray photoelectron spectroscopy and synchrotron radiation photoemission spectroscopy. At Sm coverage higher than one monolayer, exposure of oxygen to the Sm films at room temperature leads to the formation of both samarium peroxide (O22−) states and regular samarium oxide (O2−) states. By contrast, when exposing O2 to Sm film less than one monolayer on Al2O3, no O22− can be observed. Upon heating to higher temperatures, these metastable O22− states dissociate, supplying active O atoms which can diffuse through the Al2O3 thin film to further oxidize the underlying Ni3Al(111) substrate, leading to the significant increase of the Al2O3 thin film thickness. Therefore, it can be concluded that Sm, presumably in its peroxide form, acts as a catalyst for the further oxidation of the Ni3Al substrate by supplying the active oxygen species at elevated temperatures.
    Type of Medium: Online Resource
    ISSN: 0021-9606 , 1089-7690
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2014
    detail.hit.zdb_id: 3113-6
    detail.hit.zdb_id: 1473050-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Physics of Plasmas, AIP Publishing, Vol. 24, No. 3 ( 2017-03-01)
    Abstract: By using two-dimensional particle-in-cell simulations, plasma block acceleration via radiation pressure from an ultraintense circularly polarized laser pulse with intensity I≈1022W/cm2 is investigated based on a double-target scheme, in which the targets are composed of a pre-target with a relatively low plasma density and a main target with a high plasma density. It has been demonstrated that an appropriately selected pre-target can help to greatly enhance the charge separation field in the main target, which then leads to generation of a strongly accelerated and well directed plasma block with proton energy in GeV magnitude. This result can have potential applications in the plasma block ignition of proton-born fusion.
    Type of Medium: Online Resource
    ISSN: 1070-664X , 1089-7674
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2017
    detail.hit.zdb_id: 1472746-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Physics of Fluids, AIP Publishing, Vol. 33, No. 10 ( 2021-10-01)
    Abstract: Natural convection arising over vertical and horizontal heated flat surfaces is one of the most ubiquitous flows at a range of spatiotemporal scales. Despite significant developments over more than a century contributing to our fundamental understanding of heat transfer in natural convection boundary layers, certain “hidden” characteristics of these flows have received far less attention. Here, we review scattered progress on less visited fundamental topics that have strong implications to heat and mass transfer control. These topics include the instability characteristics, laminar-to-turbulent transition, and spatial flow structures of vertical natural convection boundary layers and large-scale plumes, dome, and circulating flows over discretely and entirely heated horizontal surfaces. Based on the summarized advancements in fundamental research, we elaborate on the selection of perturbations and provide an outlook on the development of perturbation generators and methods of altering large-scale flow structures as a potential means for heat and mass transfer control where natural convection is dominant.
    Type of Medium: Online Resource
    ISSN: 1070-6631 , 1089-7666
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2021
    detail.hit.zdb_id: 1472743-2
    detail.hit.zdb_id: 241528-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Journal of Applied Physics, AIP Publishing, Vol. 133, No. 17 ( 2023-05-07)
    Abstract: Whispering gallery mode resonators (WGMRs) have garnered significant interest due to their potential applications in the fields of electro-optic modulation and microwave to optical photon conversion. In this study, we have leveraged an electro-optic crystal, lead indium niobate-lead magnesium niobate-lead titanate (PIN-PMN-PT), to fabricate a high-quality WGMR. Our investigation revealed that the crystal composition used in this work is 0.24PIN-0.45PMN-0.31PT, and each element of the whole sample is homogeneously distributed. The dielectric properties of the sample revealed the necessity of limiting the temperature and external electric field frequency to below 100 °C and 106 Hz, respectively. The obtained optical quality factor value (Q value) of the resonator is ∼0.7 × 105. Impressively, our resonator could be conveniently tuned by exploiting the enormous inverse piezoelectric effect d31 of the crystal, thereby alleviating the need for precise fabrication. Furthermore, a theoretical analysis of our resonator revealed that a calculated resonance wavelength shift is within a broad range of 2.16 nm. Intriguingly, if the surface roughness of the resonator is reduced tenfold, we can increase the calculated Q value dependent on surface scattering by 104. Our finding showcases the tremendous potential of the PIN-PMN-PT crystal-based WGMR as versatile building blocks for a variety of applications in the burgeoning field of photonic technology.
    Type of Medium: Online Resource
    ISSN: 0021-8979 , 1089-7550
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2023
    detail.hit.zdb_id: 220641-9
    detail.hit.zdb_id: 3112-4
    detail.hit.zdb_id: 1476463-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Physics of Plasmas, AIP Publishing, Vol. 30, No. 10 ( 2023-10-01)
    Abstract: For most applications in the millimeter wave band, corresponding to Ka and higher-frequency bands, relatively high atmospheric absorption necessitates the use of high-power sources. Here, a new approach for projecting an oversized beam tunnel in an overmoded structure by concentrating the axial field is demonstrated to meet the high-frequency and high-power demands of compact devices. Due to the enhanced intense beam loading capability of the interaction circuit, a six-cavity Ka-band extended interaction klystron with a four-coupling-hole disk-loaded structure is designed that can stably obtain high output power. An analysis of optimization tradeoffs from introducing high order modes for allowing the application of more powerful beams to improving high order mode field distribution for enhancing the electron-wave coupling and suppressing mode competition is reported. 3D particle-in-cell simulations show attainable output powers of 1.11 MW at 32.94 GHz with a saturated gain of 57 dB by injecting a 3.3 mm diameter electron beam with a current of 24 A.
    Type of Medium: Online Resource
    ISSN: 1070-664X , 1089-7674
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2023
    detail.hit.zdb_id: 1472746-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: AIP Advances, AIP Publishing, Vol. 9, No. 12 ( 2019-12-01)
    Abstract: Energy-dispersive X-ray diffraction (EDXRD) is a promising technique for detecting drugs and explosives in security inspections. In this study, we proposed an EDXRD structure with a spiral-array of detectors that can be used for the detection of thick objects. The detectors are configured to share the same diffraction angle, and the detection area of the system is multiplied along the optical axis. Based on the spiral-array structure, an experimental system with 5 CdTe detectors was established. Experimental results demonstrate that the accurate data can be acquired at different positions within the 250-mm detection area, and the data measured by 5 detectors have a good consistency. This work may provide a new and commercial method for the detection of thick luggage in the field of security inspection.
    Type of Medium: Online Resource
    ISSN: 2158-3226
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2019
    detail.hit.zdb_id: 2583909-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 159, No. 5 ( 2023-08-07)
    Abstract: DeePMD-kit is a powerful open-source software package that facilitates molecular dynamics simulations using machine learning potentials known as Deep Potential (DP) models. This package, which was released in 2017, has been widely used in the fields of physics, chemistry, biology, and material science for studying atomistic systems. The current version of DeePMD-kit offers numerous advanced features, such as DeepPot-SE, attention-based and hybrid descriptors, the ability to fit tensile properties, type embedding, model deviation, DP-range correction, DP long range, graphics processing unit support for customized operators, model compression, non-von Neumann molecular dynamics, and improved usability, including documentation, compiled binary packages, graphical user interfaces, and application programming interfaces. This article presents an overview of the current major version of the DeePMD-kit package, highlighting its features and technical details. Additionally, this article presents a comprehensive procedure for conducting molecular dynamics as a representative application, benchmarks the accuracy and efficiency of different models, and discusses ongoing developments.
    Type of Medium: Online Resource
    ISSN: 0021-9606 , 1089-7690
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2023
    detail.hit.zdb_id: 3113-6
    detail.hit.zdb_id: 1473050-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...