GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AIP Publishing  (5)
  • 1
    In: Journal of Applied Physics, AIP Publishing, Vol. 117, No. 6 ( 2015-02-14)
    Abstract: The effect of a DC bias on the electrohydrodynamics (EHD) force induced by a surface dielectric barrier AC discharge actuator for airflow control at the atmospheric pressure is investigated. The measurement of the surface potential due to charge deposition at different DC biases is carried out by using a special designed corona like discharge potential probe. From the surface potential data, the plasma electromotive force is shown not affected much by the DC biases except for some reduction of the DC bias near the exposed electrode edge for the sheath-like configuration. The total thrust is measured by an analytical balance, and an almost linear relationship to the potential voltage at the exposed electrode edge is found for the direct thrust force. The temporally averaged ionic wind characteristics are investigated by Pitot tube sensor and schlieren visualization system. It is found that the ionic wind velocity profiles with different DC biases are almost the same in the AC discharge plasma area but gradually diversified in the further downstream area as well as the upper space away from the discharge plasma area. Also, the DC bias can significantly modify the topology of the ionic wind produced by the AC discharge actuator. These results can provide an insight into how the DC biases to affect the force generation.
    Type of Medium: Online Resource
    ISSN: 0021-8979 , 1089-7550
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2015
    detail.hit.zdb_id: 220641-9
    detail.hit.zdb_id: 3112-4
    detail.hit.zdb_id: 1476463-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Physics of Plasmas, AIP Publishing, Vol. 27, No. 12 ( 2020-12-01)
    Abstract: The dynamics of plasma and ejection characteristics of spheromaks produced by a magnetized coaxial plasma gun are studied. By placing three magnetic probes at various axial positions, the distribution of current paths in the gun is found to vary in two distinct discharge modes. During the first half-period of a discharge, the plasma moves forward in the form of a current sheet, while the diffuse distribution of current paths in the second half-period indicates a deflagration mode. The evolution images and photodiode signals of the plasma show that only a single spheromak is ejected during the entire discharge. This is because the diffuse current paths reduce the J×B Lorentz force on the leading-edge plasma, which cannot be ejected from the gun. In addition, the existence of kinks in the plasma flow in two discharge modes proves that the instability is driven by Er×Bz drift, which causes rotation of the central column. Spheromak velocities increase linearly with discharge current amplitude but are inversely proportional to the gas puff mass. In ejected spheromaks, both toroidal and poloidal magnetic fields are axisymmetric, with field strength increasing with discharge current. During magnetic reconnection events, the toroidal electric field Vz×Br drives toroidal current that generates an additional poloidal field that amplifies the starting magnetic field in the spheromak plasma. This study clarifies the relationship between the formation of a single spheromak and the current distribution, and also provides a new way to optimize the spheromak's injection performance.
    Type of Medium: Online Resource
    ISSN: 1070-664X , 1089-7674
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2020
    detail.hit.zdb_id: 1472746-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    AIP Publishing ; 2016
    In:  Physics of Plasmas Vol. 23, No. 12 ( 2016-12-01)
    In: Physics of Plasmas, AIP Publishing, Vol. 23, No. 12 ( 2016-12-01)
    Abstract: Atmospheric-pressure dielectric barrier discharge (DBD) accompanied by airflow has attracted a significant attention for its extensive applications. In this paper, the effects of airflow on the characteristics of the atmospheric air DBD plasma are experimentally investigated using the DBD reactor excited by a 15 kHz AC power source. In order to study the discharge filaments distribution at different flow rates, transparent conductive indium tin oxide film is used as the upper electrode, and quartz glasses are used as insulated dielectrics. Experiment results prove that the breakdown voltage is decreased and more current pulses with declined amplitudes are produced when the airflow is introduced into the discharge gap. It is confirmed that although the discharge seems to be diffuse in the presence of airflow to the naked eyes, the discharge mode remains filamentary in the intensified charge-coupled device images within a single AC cycle. By acquiring the images with a different exposure time, it can be recognized that the discharge filaments move along the flow field direction with a velocity less than the corresponding flow rate. The movement of discharge filaments is attributed to the motion of the charge induced by the airflow.
    Type of Medium: Online Resource
    ISSN: 1070-664X , 1089-7674
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2016
    detail.hit.zdb_id: 1472746-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    AIP Publishing ; 2009
    In:  Applied Physics Letters Vol. 94, No. 14 ( 2009-04-06)
    In: Applied Physics Letters, AIP Publishing, Vol. 94, No. 14 ( 2009-04-06)
    Abstract: A special DNA sensing platform based on a network of hybrid DNA-quantum dot system was designed and fabricated. Upon attachment of hybridized complementary DNA sequences, the molecular switch system can exhibit both photoinduced Förster resonance energy transfer (FRET) and photovoltaic (PV) effects simultaneously, but will give much weakened or no effect for the capture of hybridized products from “mismatched” DNA sequences. This dual sensing scheme based on combined FRET and PV effects can safeguard the accuracy of sensing, as FRET and PV can be singly induced even in the case of mismatch.
    Type of Medium: Online Resource
    ISSN: 0003-6951 , 1077-3118
    RVK:
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2009
    detail.hit.zdb_id: 211245-0
    detail.hit.zdb_id: 1469436-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    AIP Publishing ; 2016
    In:  Physics of Plasmas Vol. 23, No. 11 ( 2016-11-01)
    In: Physics of Plasmas, AIP Publishing, Vol. 23, No. 11 ( 2016-11-01)
    Abstract: In this paper, the impacts of the parallel magnetic field on the repetitive nanosecond pulsed dielectric barrier discharge (DBD) are experimentally investigated by optical and electrical measurements. The DBD is generated between two parallel-plate electrodes in the ambient air with the stationary magnetic field on the order of 1 T. The experimental results show that additional microdischarge channels are generated and the photocurrent intensity of the plasma is increased by the magnetic field. The microdischarge channels develop along the magnetic field lines and the diffuse background emission of the discharge is stronger in the DBD with the magnetic field. As the pulse repetition frequency decreases from 1200 Hz to 100 Hz, only the photocurrent intensity of the third discharge that occurred at about 500 ns is noticeably increased by the additional magnetic field. It is believed that the enhancement of the memory effect and the confinement of the magnetic field on electrons are the main reasons.
    Type of Medium: Online Resource
    ISSN: 1070-664X , 1089-7674
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2016
    detail.hit.zdb_id: 1472746-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...