GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 137, No. 22 ( 2012-12-14)
    Abstract: In this work, the advantages of a locally diabatic propagation of the electronic wave function in surface hopping dynamics proceeding on adiabatic surfaces are presented providing very stable results even in challenging cases of highly peaked nonadiabatic interactions. The method was applied to the simulation of transport phenomena in the stacked ethylene dimer radical cation and the hydrogen bonded 2-pyridone dimer. Systematic tests showed the reliability of the method, in situations where standard methods relying on an adiabatic propagation of the wave function and explicit calculation of the nonadiabatic coupling terms exhibited significant numerical instabilities. Investigations of the ethylene dimer radical cation with an intermolecular distance of 7.0 Å provided a quantitative description of diabatic charge trapping. For the 2-pyidone dimer, a complex dynamics was obtained: a very fast ( & lt;10 fs) initial S2/S1 internal conversion; subsequent excitation energy transfers with a characteristic time of 207 fs; and the occurrence of proton coupled electron transfer (PCET) in 26% of the trajectories. The computed characteristic excitation energy transfer time of 207 fs is in satisfactory agreement with the experimental value of 318 fs derived from the vibronic exciton splittings in a monodeuterated 2-pyridone dimer complex. The importance of nonadiabatic coupling for the PCET related to the electron transfer was demonstrated by the dynamics simulations.
    Type of Medium: Online Resource
    ISSN: 0021-9606 , 1089-7690
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2012
    detail.hit.zdb_id: 3113-6
    detail.hit.zdb_id: 1473050-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 149, No. 18 ( 2018-11-14)
    Abstract: The electron donor poly-thienothiophene-benzodithiophene (PTB) polymer series displays remarkable properties that lead to more efficient bulk heterojunction (BHJ) organic solar cells. In this work, the ground and four excited states (bright S1 and dark S2–S4) of three different members of the PTBn (n = 1, 6, 7) series were studied and compared with the prototypical poly(3-hexylthiophene) (P3HT) donor polymer. Time-dependent density functional theory was employed to investigate oligomers of similar sizes (∼50 Å). Charge alternation electron accumulation and depletion regions of the four transitions are concentrated on the inner units, thereby favoring interaction with the electron acceptor in a BHJ. The bright S1 transition energies of PTBn are about 0.2 eV lower as compared to P3HT, thereby allowing a better match of their levels with the typical C60-type acceptor moiety in a BHJ. Side chains play a minor role in the electronic spectrum (less than ∼0.1 eV). The most efficient PTB7 transfers more electronic charge from its electron-rich benzodithiophene subunit to its electron-deficient thieno[3,4-b] thiophene subunit as compared to PTB1 and PTB6. We show that the dipolar effect, a partial concentration of negative and positive charges on the different parts of the donor polymer that favors charge separation, is more pronounced in PTBn polymers and typically an order of magnitude larger as compared to P3HT. These effects are conspicuous for the most efficient polymer of the series, PTB7, with its fluorine substituent shown to play a crucial role.
    Type of Medium: Online Resource
    ISSN: 0021-9606 , 1089-7690
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2018
    detail.hit.zdb_id: 3113-6
    detail.hit.zdb_id: 1473050-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 114, No. 2 ( 2001-01-08), p. 746-757
    Abstract: Extended MR-CISD (multireference configuration interaction singles and doubles), MR-CISD+Q (multireference configuration interaction singles, doubles, and quadrupole), and MR-AQCC (multireference averaged quadratic coupled clusters) calculations have been performed on the following valence states of formaldehyde: 1 1A1 (planar ground state), 1 1A2 and 1 1A″ (planar and nonplanar n-π* state), 1 1B1 and 2 1A1 (planar σ-π* and π-π* states) and their nonplanar counterparts 2 1A′ and 3 1A′. Full geometry optimizations have been performed using analytic gradient techniques developed for the MR-CISD and MR-AQCC methods as implemented into the COLUMBUS program system. Basis set extrapolation techniques have been used for the determination of high-accuracy geometries and adiabatic excitation energies. Harmonic vibrational frequencies have been computed also. Agreement between calculated and available experimental data is very good. Especially for the σ-π* and π-π* states experimental information is extremely scarce and our results provide reliable predictions. The major new result of our work is the finding that for the 2 1A1(π-π*) state the structure optimized under planarity constraints is only a saddle point and not a minimum. This fact is the result of a conical intersection between the σ-π* and π-π* states (1 1B1 and 2 1A1). The final result is that neither on the 2 1A′ nor on the 3 1A′ surface a stationary minimum can be assigned to the π-π* state.
    Type of Medium: Online Resource
    ISSN: 0021-9606 , 1089-7690
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2001
    detail.hit.zdb_id: 3113-6
    detail.hit.zdb_id: 1473050-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 150, No. 12 ( 2019-03-28)
    Abstract: Five paradigmatic polycyclic aromatic hydrocarbons (PAHs) (pyrene, circum-1-pyrene, coronene, circum-1-coronene, and circum-2-coronene) are used for studying the performance of three single-reference methods {scaled opposite-spin-algebraic diagrammatic construction to second-order [SOS-ADC(2)], time-dependent (TD)-B3LYP, and TD-Coulomb-attenuating method (CAM)-B3LYP} and three multireference (MR) methods [density functional theory/multireference configuration interaction (DFT/MRCI), strongly contracted-n-electron valence state perturbation theory to second order (NEVPT2), and spectroscopy oriented configuration interaction (SORCI)] . The performance of these methods was evaluated by comparison of the calculated vertical excitation energies with experiments, where available. DFT/MRCI performs best and thus was used as a benchmark for other approaches where experimental values were not available. Both TD-B3LYP and NEVPT2 agree well with the benchmark data. SORCI performs better for coronene than for pyrene. SOS-ADC(2) does reasonably well in terms of excitation energies for smaller systems, but the error increases somewhat as the size of the system gets bigger. The natural transition orbital analysis for SOS-ADC(2) results indicated that at least two configurations were essential to characterize most of the lower-case electronic states. TD-CAM-B3LYP gives the largest errors for excitation energies and also gives an incorrect order of the lowest two states in circum-1-pyrene. A strong density increase of dark states was observed in the UV spectra with increasing size except for the lowest few states which remained well separated. An extrapolation of the UV spectra to infinite PAH size for S1, S2, and the first bright state based on the coronene series was made. The extrapolated excitation energies closest to experimental measurements on graphene quantum dots were obtained by TD-CAM-B3LYP.
    Type of Medium: Online Resource
    ISSN: 0021-9606 , 1089-7690
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2019
    detail.hit.zdb_id: 3113-6
    detail.hit.zdb_id: 1473050-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 154, No. 4 ( 2021-01-28)
    Abstract: Extended quantum chemical calculations were performed for the tetracene dimer to provide benchmark results, analyze the excimer survival process, and explore the possibility of using long-range-corrected (LC) time-dependent second-order density functional tight-biding (DFTB2) for this system. Ground- and first-excited-state optimized geometries, vertical excitations at relevant minima, and intermonomer displacement potential energy curves (PECs) were calculated for these purposes. Ground-state geometries were optimized with the scaled-opposite-spin (SOS) second-order Møller–Plesset perturbation (MP2) theory and LC-DFT (density functional theory) and LC-DFTB2 levels. Excited-state geometries were optimized with SOS-ADC(2) (algebraic diagrammatic construction to second-order) and the time-dependent approaches for the latter two methods. Vertical excitations and PECs were compared to multireference configuration interaction DFT (DFT/MRCI). All methods predict the lowest-energy S0 conformer to have monomers parallel and rotated relative to each other and the lowest S1 conformer to be of a displaced-stacked type. LC-DFTB2, however, presents some relevant differences regarding other conformers for S0. Despite some state-order inversions, overall good agreement between methods was observed in the spectral shape, state character, and PECs. Nevertheless, DFT/MRCI predicts that the S1 state should acquire a doubly excited-state character relevant to the excimer survival process and, therefore, cannot be completely described by the single reference methods used in this work. PECs also revealed an interesting relation between dissociation energies and the intermonomer charge-transfer interactions for some states.
    Type of Medium: Online Resource
    ISSN: 0021-9606 , 1089-7690
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2021
    detail.hit.zdb_id: 3113-6
    detail.hit.zdb_id: 1473050-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 154, No. 10 ( 2021-03-14)
    Abstract: Density functional theory calculations were used to reveal the mechanism for the fluorination reaction of active Lewis acid sites on alumina structures, which is important in understanding the pyrophoric processes involving Al particles. In this reaction, hydroxyl groups of active sites are replaced by fluorine anions. Alumina structures were represented by three aluminum aqua hydroxo clusters (labeled AlOOH), in which the Al atom had different coordination spheres, particularly four, five, or six. The F-bearing molecules HF, CH3F, and CF4 were taken as reactants for the fluorination reactions. The overall reaction was represented by four reaction steps as follows: (i) formation of the reaction complex, (ii) activation of the transition state (TS), (iii) deactivation of the TS with a formation of the product complex, and (iv) its decomplexation to individual products. The active reaction center of the TS structure is four-membered, in which two bonds break heterolytically and two form. The lowest reaction barriers were observed for the HF molecule, while the two other molecules had significantly higher reaction barriers. Similarly, the largest overall reaction energies (in absolute value) were found for HF, especially for the five- and six-coordinated Al centers. While the positive charge on the Al center remained almost constant throughout the reaction steps, large charge changes were observed for carbon bearing molecules with a formation of the carbenium cations in the TS step. Realizing the important role of HF in promoting exothermic reactions will enable new molecular design strategies for transforming energy release properties of aluminum powder fuels.
    Type of Medium: Online Resource
    ISSN: 0021-9606 , 1089-7690
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2021
    detail.hit.zdb_id: 3113-6
    detail.hit.zdb_id: 1473050-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 91, No. 9 ( 1989-11-01), p. 5154-5159
    Abstract: Using a purely ab initio minimum energy path for the trans-tunneling motion in the HF dimer, the energy levels for the K-type rotation and trans-tunneling motion for (HF)2 and (DF)2 are calculated with a one-dimensional semirigid bender Hamiltonian and no adjustable parameters. The transition moments for rotation-tunneling transitions are calculated, using our ab initio value for the dipole moment of an isolated HF molecule, and we also calculate B̄ values. The energy levels we obtain are in close agreement with experiment; for example, the K=0 tunneling splitting in (HF)2 is calculated as 0.65 cm−1 compared to the experimental value of 0.658 69 cm−1. As well as showing that our ab initio minimum energy path is very good, the calculation demonstrates that the semirigid bender formalism is able to account quantitatively for the unusual Kdependence of the rotational energies resulting from the quasilinear behavior, and that the trans-tunneling motion is separable from the other degrees of freedom. We use the results to predict the locations, and transition moments, of the ΔK=0 and ±1 subbands in the tunneling spectra of (HF)2 and (DF)2, many of which have not yet been observed.
    Type of Medium: Online Resource
    ISSN: 0021-9606 , 1089-7690
    Language: English
    Publisher: AIP Publishing
    Publication Date: 1989
    detail.hit.zdb_id: 3113-6
    detail.hit.zdb_id: 1473050-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 120, No. 16 ( 2004-04-22), p. 7330-7339
    Abstract: The method for the analytic calculation of the nonadiabatic coupling vector at the multireference configuration-interaction (MR-CI) level and its program implementation into the COLUMBUS program system described in the preceding paper [Lischka et al., J. Chem. Phys. 120, 7322 (2004)] has been combined with automatic searches for minima on the crossing seam (MXS). Based on a perturbative description of the vicinity of a conical intersection, a Lagrange formalism for the determination of MXS has been derived. Geometry optimization by direct inversion in the iterative subspace extrapolation is used to improve the convergence properties of the corresponding Newton-Raphson procedure. Three examples have been investigated: the crossing between the 1 1B1/2 1A1 valence states in formaldehyde, the crossing between the 2 1A1/3 1A1 π-π* valence and ny-3py Rydberg states in formaldehyde, and three crossings in the case of the photodimerization of ethylene. The methods developed allow MXS searches of significantly larger systems at the MR-CI level than have been possible before and significantly more accurate calculations as compared to previous complete-active space self-consistent field approaches.
    Type of Medium: Online Resource
    ISSN: 0021-9606 , 1089-7690
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2004
    detail.hit.zdb_id: 3113-6
    detail.hit.zdb_id: 1473050-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    AIP Publishing ; 2012
    In:  The Journal of Chemical Physics Vol. 137, No. 22 ( 2012-12-14)
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 137, No. 22 ( 2012-12-14)
    Abstract: In spite of the importance of nonadiabatic dynamics simulations for the understanding of ultrafast photo-induced phenomena, simulations based on different methodologies have often led to contradictory results. In this work, we proceed through a comprehensive investigation of on-the-fly surface-hopping simulations of 9H-adenine in the gas phase using different electronic structure theories (ab initio, semi-empirical, and density functional methods). Simulations that employ ab initio and semi-empirical multireference configuration interaction methods predict the experimentally observed ultrafast deactivation of 9H-adenine with similar time scales, however, through different internal conversion channels. Simulations based on time-dependent density functional theory with six different hybrid and range-corrected functionals fail to predict the ultrafast deactivation. The origin of these differences is analyzed by systematic calculations of the relevant reaction pathways, which show that these discrepancies can always be traced back to topographical features of the underlying potential energy surfaces.
    Type of Medium: Online Resource
    ISSN: 0021-9606 , 1089-7690
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2012
    detail.hit.zdb_id: 3113-6
    detail.hit.zdb_id: 1473050-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 137, No. 4 ( 2012-07-28)
    Abstract: Electronic structure calculations and direct chemical dynamics simulations are used to study the formation and decomposition of dioxetane on its ground state singlet potential energy surface. The stationary points for 1O2 + C2H4, the singlet ·O–O–CH2–CH2· biradical, the transition state (TS) connecting this biradical with dioxetane, and the two transition states and gauche ·O–CH2–CH2–O· biradical connecting dioxetane with the formaldehyde product molecules are investigated at different levels of electronic structure theory including UB3LYP, UMP2, MRMP2, and CASSCF and a range of basis sets. The UB3LYP/6-31G* method was found to give representative energies for the reactive system and was used as a model for the simulations. UB3LYP/6-31G* direct dynamics trajectories were initiated at the TS connecting the ·O–O–CH2–CH2· biradical and dioxetane by sampling the TS's vibrational energy levels, and rotational and reaction coordinate energies, with Boltzmann distributions at 300, 1000, and 1500 K. This corresponds to the transition state theory model for trajectories that pass the TS. The trajectories were directed randomly towards both the biradical and dioxetane. A small fraction of the trajectories directed towards the biradical recrossed the TS and formed dioxetane. The remainder formed 1O2 + C2H4 and of these ∼ 40% went directly from the TS to 1O2 + C2H4 without getting trapped and forming an intermediate in the ·O–O–CH2–CH2· biradical potential energy minimum, a non-statistical result. The dioxetane molecules which are formed dissociate to two formaldehyde molecules with a rate constant two orders of magnitude smaller than that predicted by Rice–Ramsperger–Kassel–Marcus theory. The reaction dynamics from dioxetane to the formaldehyde molecules do not follow the intrinsic reaction coordinate or involve trapping in the gauche ·O–CH2–CH2–O· biradical potential energy minimum. Important non-statistical dynamics are exhibited for this reactive system.
    Type of Medium: Online Resource
    ISSN: 0021-9606 , 1089-7690
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2012
    detail.hit.zdb_id: 3113-6
    detail.hit.zdb_id: 1473050-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...