GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AIP Publishing  (12)
  • 1
    In: Applied Physics Letters, AIP Publishing, Vol. 114, No. 18 ( 2019-05-06)
    Abstract: All-inorganic perovskite quantum dots (APQDs) have emerged as excellent materials which have been widely used in numerous micro-nano photoelectric devices. However, resistive random access memory (RRAM) devices based on APQDs are relatively scarce. In this work, RRAM based on CsPbBr3 APQDs prepared by the solution processed method was fabricated at room temperature. The sandwich structure memory device shows high reproducibility, good data retention ability, and light assisted multilevel storage capability. The resistance ratio (ON/OFF) of the RRAM device between the high resistance state and the low resistance state reaches almost 107. Additionally, the device exhibits high performances under low power consumption—low reading voltage (−0.3 V) and operation voltage (−2.4 V/1.55 V). It is suggested that the connection and rupture of conducting filaments, which are formed by Br vacancies under an electric field, are responsible for the resistive switching effect. Our work provides an opportunity to develop the next generation high-performance and stable nonvolatile memory devices.
    Type of Medium: Online Resource
    ISSN: 0003-6951 , 1077-3118
    RVK:
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2019
    detail.hit.zdb_id: 211245-0
    detail.hit.zdb_id: 1469436-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Applied Physics Letters, AIP Publishing, Vol. 112, No. 21 ( 2018-05-21)
    Abstract: An all-inorganic cesium lead halide quantum dot (QD) based Au nanoparticle (NP) floating-gate memory with a solution processed layer-by-layer method is demonstrated. Easy synthesis at room temperature and excellent stability make all-inorganic CsPbBr3 perovskite QDs suitable as a semiconductor layer in low voltage nonvolatile transistor memory. The bipolarity of QDs has both electrons and holes stored in the Au NP floating gate, resulting in bidirectional shifts of initial threshold voltage according to the applied programing and erasing pulses. Under low operation voltage (±5 V), the memory achieved a great memory window (∼2.4 V), long retention time ( & gt;105 s), and stable endurance properties after 200 cycles. So the proposed memory device based on CsPbBr3 perovskite QDs has a great potential in the flash memory market.
    Type of Medium: Online Resource
    ISSN: 0003-6951 , 1077-3118
    RVK:
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2018
    detail.hit.zdb_id: 211245-0
    detail.hit.zdb_id: 1469436-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    AIP Publishing ; 1995
    In:  Applied Physics Letters Vol. 67, No. 13 ( 1995-09-25), p. 1874-1876
    In: Applied Physics Letters, AIP Publishing, Vol. 67, No. 13 ( 1995-09-25), p. 1874-1876
    Abstract: Optical properties of single submonolayer InAs structures grown on GaAs (001) matrix are systematically investigated by means of photoluminescence and time-resolved photoluminescence. It is shown that the formation of InAs dots with 1 ML height leads to localization of excitons under certain submonolayer InAs coverages, which play a key role in the highly improved luminescence efficiency of the submonolayer InAs/GaAs structures.
    Type of Medium: Online Resource
    ISSN: 0003-6951 , 1077-3118
    RVK:
    Language: English
    Publisher: AIP Publishing
    Publication Date: 1995
    detail.hit.zdb_id: 211245-0
    detail.hit.zdb_id: 1469436-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    AIP Publishing ; 2023
    In:  AIP Advances Vol. 13, No. 8 ( 2023-08-01)
    In: AIP Advances, AIP Publishing, Vol. 13, No. 8 ( 2023-08-01)
    Abstract: To improve the short-term wind power output prediction accuracy and overcome the model prediction instability problem, we propose a combined prediction model based on variational modal decomposition (VMD) combined with the improved whale algorithm (GSWOA) to optimize the long short-term memory network (LSTM) short-term wind power. First, VMD is utilized to decompose the wind power input sequence into modal components of different complexities, and the components are reconstructed into subcomponents with typical characteristics through approximate entropy, which reduces the computational scale of non-smooth sequence analysis. Second, the GSWOA is used to optimize the main influencing parameters of the LSTM model in order to obtain the weights and thresholds under the optimal LSTM model and to use the reconstructed individual subsequences. Finally, the actual data from two wind farms in Xinjiang and Northeast China are taken to verify the generalizability of the proposed model. The comparative analysis of the prediction results under different scenarios demonstrates that the improved model shows higher performance than the original model.
    Type of Medium: Online Resource
    ISSN: 2158-3226
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2023
    detail.hit.zdb_id: 2583909-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    AIP Publishing ; 2014
    In:  Applied Physics Letters Vol. 104, No. 6 ( 2014-02-10)
    In: Applied Physics Letters, AIP Publishing, Vol. 104, No. 6 ( 2014-02-10)
    Abstract: Recently, many methods based on amplitude or phase modulation to reduce the focal spot and enhance the longitudinal field component of a tight-focused radially polarized light beam have been suggested. But they all suffer from spot size limit 0.36λ/NA and large side lobes strength in longitudinal component. Here, we report a method of generating a tighter focused spot by focusing radially polarized and azimuthally polarized beams of different wavelengths on a thin photochromic film through a high-numerical-aperture lens simultaneously. In this method, by suppressing the radial component and compressing the longitudinal component of radially polarized beam, absorbance modulation makes the ultimate spot size break the size limit of 0.36λ/NA with side-lobe intensity of longitudinal component below 1% of central-peak intensity. The theoretical analysis and simulation demonstrate that the focal spot size could be smaller than 0.1λ with nearly all radial component blocked at high intensity ratio of the two illuminating beams.
    Type of Medium: Online Resource
    ISSN: 0003-6951 , 1077-3118
    RVK:
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2014
    detail.hit.zdb_id: 211245-0
    detail.hit.zdb_id: 1469436-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    AIP Publishing ; 2015
    In:  The Journal of Chemical Physics Vol. 143, No. 2 ( 2015-07-14)
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 143, No. 2 ( 2015-07-14)
    Abstract: The three-dimensional (3D) nuclear magnetic resonance (NMR) spectroscopy constitutes an important and powerful tool in analyzing chemical and biological systems. However, the abundant 3D information arrives at the expense of long acquisition times lasting hours or even days. Therefore, there has been a continuous interest in developing techniques to accelerate recordings of 3D NMR spectra, among which the ultrafast spatiotemporal encoding technique supplies impressive acquisition speed by compressing a multidimensional spectrum in a single scan. However, it tends to suffer from tradeoffs among spectral widths in different dimensions, which deteriorates in cases of NMR spectroscopy with more dimensions. In this study, the discrete decoding is proposed to liberate the ultrafast technique from tradeoffs among spectral widths in different dimensions by focusing decoding on signal-bearing sites. For verifying its feasibility and effectiveness, we utilized the method to generate two different types of 3D spectra. The proposed method is also applicable to cases with more than three dimensions, which, based on the experimental results, may widen applications of the ultrafast technique.
    Type of Medium: Online Resource
    ISSN: 0021-9606 , 1089-7690
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2015
    detail.hit.zdb_id: 3113-6
    detail.hit.zdb_id: 1473050-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 153, No. 1 ( 2020-07-07)
    Abstract: In this study, high quality CsxFA1−xPbIyBr3−y perovskite thin films were successfully fabricated by an evaporation/spray-coating hybrid deposition method. In this method, CsI and PbI2 were first deposited via thermal evaporation, and then FAI/FABr mixed solution was sprayed on the CsI/PbI2 substrate to form the CsxFA1−xPbIyBr3−y film. As confirmed by x-ray diffraction, scanning electron microscopy, and atomic force microscopy, a perovskite film with full surface coverage and small surface roughness was obtained. Then, the effect of interface modification materials on the performance of perovskite solar cells (PSCs) was investigated: the devices with the [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) interlayer incorporated via vacuum evaporation deposition between SnO2 and perovskite showed remarkably higher performance than those with the C60 interlayer, which was attributed to enhanced charge extraction and reduced recombination at the SnO2/PCBM/perovskite interface. As a result, a high power conversion efficiency (PCE) of 18.21% was obtained for the 0.16 cm2 device. To the best of our knowledge, it is the highest efficiency of CsxFA1−xPbIyBr3−y based PSCs fabricated by the spray technique. Furthermore, we fabricated mini-modules with the size of 5 × 5 cm2 and achieved a PCE of 14.7%.
    Type of Medium: Online Resource
    ISSN: 0021-9606 , 1089-7690
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2020
    detail.hit.zdb_id: 3113-6
    detail.hit.zdb_id: 1473050-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    AIP Publishing ; 2022
    In:  Physics of Fluids Vol. 34, No. 5 ( 2022-05-01)
    In: Physics of Fluids, AIP Publishing, Vol. 34, No. 5 ( 2022-05-01)
    Abstract: One of the key challenges faced by hypersonic flying is the complex thermal–mechanical–chemical coupling effect between thermal protection materials and non-equilibrium flow environment. Silicon carbide (SiC) has drawn much attention due to its superior physical and chemical characteristics, and its performance under hyperthermal atomic oxygen (AO) impact, however, is still little known. This work investigates the effects of various SiC crystalline polytypes, surface temperature, and crystal orientations on the SiC interface evolution by hyperthermal AO collisions via the reactive molecular dynamics method. The results showed that SiC surface erosion is highly dependent on the temperature and the presence of different interfacial structures. In the range of 500–2000 K, the proceeding of the passive oxidation advances the amorphous SiO2/SiC interface and the formation of SixOy phase weakens the surface catalytic characteristics and mechanical properties. The presence of defects, such as dangling bonds at the gas–solid interface, caused by different surface orientations affects the anti-erosion capabilities of SiC significantly, which may limit its further wide applications.
    Type of Medium: Online Resource
    ISSN: 1070-6631 , 1089-7666
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2022
    detail.hit.zdb_id: 1472743-2
    detail.hit.zdb_id: 241528-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    AIP Publishing ; 2022
    In:  Applied Physics Letters Vol. 120, No. 6 ( 2022-02-07)
    In: Applied Physics Letters, AIP Publishing, Vol. 120, No. 6 ( 2022-02-07)
    Abstract: Compared to extensive studies of thermal transport in two-dimensional materials, very limited attention has been paid to the corresponding phenomenon in quasi-one-dimensional van der Waals crystals. Here, we show that Ta2Se3 can be easily exfoliated into thin nanowires, indicating strong anisotropy in the bonding strength within the basal plane. Systematic thermal property measurements disclose signatures of one-dimensional phonons as the nanowire hydraulic diameter reduces below 19.2 nm with linearly escalating thermal conductivity as temperature increases and size dependence inconsistent with the classical size effect. We further show that these unusual transport properties are induced by elastic stiffening occurring for wires of  & lt;30 nm diameter.
    Type of Medium: Online Resource
    ISSN: 0003-6951 , 1077-3118
    RVK:
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2022
    detail.hit.zdb_id: 211245-0
    detail.hit.zdb_id: 1469436-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    AIP Publishing ; 2018
    In:  Journal of Renewable and Sustainable Energy Vol. 10, No. 1 ( 2018-01-01)
    In: Journal of Renewable and Sustainable Energy, AIP Publishing, Vol. 10, No. 1 ( 2018-01-01)
    Abstract: The performance and economics of turbines in a tidal array are largely dependent on the power per turbine, and so, approaches that can increase this power are crucial for the development of tidal energy. In this paper, we combine a two-scale partial array model and a one-dimensional channel model to investigate the effects of blockage, turbine arrangement, and channel dynamics on tidal turbines. The power per turbine is obtained as the product of two parameters: a power coefficient measuring the power acquired from the instantaneous flow and an environment coefficient showing the response of the channel to added drag. The results suggest that taking account of channel dynamics will decrease the predicted power and the optimal induction factor. The model also shows that when the number of turbines in a row is increased, the power per turbine may monotonically increase or decrease or attain a maximum value at a certain global blockage. These different results depend on two characteristic parameters of the channel: α and λD. Furthermore, we find that besides turbine density (blockage), the arrangement of the turbines should also be considered if we want to obtain an efficient array. Appropriate arrangements can enhance the performance of turbines in tidal channels although the beneficial effects will be partly offset by reduced velocities. The turbine arrangement also has an effect on the optimal global blockage at which the power attains its maximum value. As the rate of increase of the power per turbine from an array spanning the whole channel width to the optimal partial array diminishes with increasing blockage, the optimal global blockage will also decrease.
    Type of Medium: Online Resource
    ISSN: 1941-7012
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2018
    detail.hit.zdb_id: 2444311-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...