GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AIP Publishing  (842)
Material
Publisher
  • AIP Publishing  (842)
Language
Subjects(RVK)
  • 1
    In: Physics of Plasmas, AIP Publishing, Vol. 25, No. 7 ( 2018-07-01)
    Abstract: In this paper, we will experimentally investigate the power threshold (PL-H) in upper single null plasmas with an ITER-like tungsten divertor under different ∇B drift directions on EAST [F. Ding et al., Commissioning and PSI Behavior of the ITER-Like W/Cu Divertor in EAST 22nd PSI, Rome (2016)]. The power threshold for the low (L) to high (H) confinement mode has a clear and positive toroidal magnetic field, BT, dependence when the ∇B drift points toward the primary X-point (B×∇B↑). A factor of 2–3 increase in PL-H is observed for the ∇B drift away from the primary X-point (B×∇B↓). The edge and core impurities quantified by spectroscopy measurements show comparable levels for the transitions for both drift directions. On the other hand, it is found that the divertor Dα emission just prior to the L-H transition is lower for B×∇B↑, compared with that for B×∇B↓. The upper in-out divertor asymmetry, as manifested by particle fluxes measured by the divertor triple Langmuir probe, is most marked for B×∇B↓, and with significantly more particle flux to the outer divertor. The reversing field increases the particle flux into the upper inner and lower outer divertor, reducing the in-out asymmetry. One important distinction between the two field directions has been observed, with respect to the amplitude of the scrape-off layer (SOL) parallel flow. A dedicated experiment under similar target plasma conditions shows a lower SOL density and thus a steeper density gradient slightly inside the separatrix, where a lower PL-H is found for the B×∇B↑, compared to that for B×∇B↓. We, therefore, conclude that the field-dependent SOL plasma conditions play an important role in the transition physics.
    Type of Medium: Online Resource
    ISSN: 1070-664X , 1089-7674
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2018
    detail.hit.zdb_id: 1472746-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: AIP Advances, AIP Publishing, Vol. 12, No. 2 ( 2022-02-01)
    Abstract: We focus on the anomalous Hall effects (AHEs) of Co/Ni multilayers with perpendicular magnetic anisotropy (PMA) by using Ta, Nb, and Cu as the buffer and top layer. An un-conventional AHE behavior was found in which the AH resistance exhibits two anti-symmetric peaks in the presence of a magnetic field. Moreover, Co/Ni multilayers with a Ta neighboring layer show reverse AH resistance compared to the Nb and Cu neighboring layers, except Ta bottom and Cu capping layers. The former can be explained by considering the influence of the external magnetic field on the interfacial spin orbit interaction due to spontaneous symmetry breaking at the ferromagnetic (FM)/FM layer interface. Furthermore, the reverse Co/Ni AHE with a Ta adjacent layer can be interpreted as the leakage spin current of proximity effects from Ta due to its larger spin–orbit coupling, and finally, taking the shunting action of the Cu layer into account, the Co/Ni AHE with Ta and Cu adjacent layers can also be explained. Our results provide a clear physics picture of the AHE in a two-dimensional nano-scaling FM/FM interface with PMA; in particular, this work shows that the non-magnetic adjacent layer with large spin–orbit coupling will play an important role in the understanding of AHE in two-dimensional FM multilayers.
    Type of Medium: Online Resource
    ISSN: 2158-3226
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2022
    detail.hit.zdb_id: 2583909-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Review of Scientific Instruments, AIP Publishing, Vol. 89, No. 7 ( 2018-07-01)
    Abstract: The diagnosis of the fuel retention and impurity deposition on the plasma facing components (PFCs) is very important for monitoring plasma-wall interactions and improving the performance of long-pulse operation for tokamak devices. In this study, a remote in situ laser-induced breakdown spectroscopic (RIS-LIBS) system has been developed to be an effective and routine method for the diagnosis of the composition of the PFCs on Experimental Advanced Superconducting Tokamak (EAST). The RIS-LIBS system can be operated between EAST discharges via a remote network control system. This allows a flexible diagnosis for the PFCs at a specific EAST discharge operation or under planned plasma scenarios according to the experimental requirement. Measurements on the fuel retention and impurity deposition of the PFCs have been performed for the test of the RIS-LIBS system, and the depth resolution and the lateral resolution of the RIS-LIBS system have been achieved to be ∼100 nm and ∼3.0 mm, respectively. For the test of detectable elements, the fuel (deuterium) and impurities have been detected and identified clearly. In addition, the measurement of fuel abundance on the first wall as a function of the days of EAST deuterium plasma discharges has been carried out for the first time. These results well manifest a significant prospect of the RIS-LIBS for the diagnosis of the PFCs in the upcoming fusion devices like China Fusion Engineering Test Reactor (CFETR) and ITER.
    Type of Medium: Online Resource
    ISSN: 0034-6748 , 1089-7623
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2018
    detail.hit.zdb_id: 209865-9
    detail.hit.zdb_id: 1472905-2
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Matter and Radiation at Extremes, AIP Publishing, Vol. 8, No. 5 ( 2023-09-01)
    Abstract: The first laser–plasma interaction experiment using lasers of eight beams grouped into one octad has been conducted on the Shenguang Octopus facility. Although each beam intensity is below its individual threshold for stimulated Brillouin backscattering (SBS), collective behaviors are excited to enhance the octad SBS. In particular, when two-color/cone lasers with wavelength separation 0.3 nm are used, the backward SBS reflectivities show novel behavior in which beams of longer wavelength achieve higher SBS gain. This property of SBS can be attributed to the rotation of the wave vectors of common ion acoustic waves due to the competition of detunings between geometrical angle and wavelength separation. This mechanism is confirmed using massively parallel supercomputer simulations with the three-dimensional laser–plasma interaction code LAP3D.
    Type of Medium: Online Resource
    ISSN: 2468-2047 , 2468-080X
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2023
    detail.hit.zdb_id: 2858469-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Matter and Radiation at Extremes, AIP Publishing, Vol. 4, No. 5 ( 2019-09-01)
    Abstract: We report experimental research on laser plasma interaction (LPI) conducted in Shenguang laser facilities during the past ten years. The research generally consists of three phases: (1) developing platforms for LPI research in mm-scale plasma with limited drive energy, where both gasbag and gas-filled hohlraum targets are tested; (2) studying the effects of beam-smoothing techniques, such as continuous phase plate and polarization smoothing, on the suppression of LPI; and (3) exploring the factors affecting LPI in integrated implosion experiments, which include the laser intensity, gas-fill pressure, size of the laser-entrance hole, and interplay between different beam cones. Results obtained in each phase will be presented and discussed in detail.
    Type of Medium: Online Resource
    ISSN: 2468-2047 , 2468-080X
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2019
    detail.hit.zdb_id: 2858469-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Matter and Radiation at Extremes, AIP Publishing, Vol. 7, No. 6 ( 2022-11-01)
    Abstract: A recently proposed octahedral spherical hohlraum with six laser entrance holes (LEHs) is an attractive concept for an upgraded laser facility aiming at a predictable and reproducible fusion gain with a simple target design. However, with the laser energies available at present, LEH size can be a critical issue. Owing to the uncertainties in simulation results, the LEH size should be determined on the basis of experimental evidence. However, determination of LEH size of an ignition target at a small-scale laser facility poses difficulties. In this paper, we propose to use the prepulse of an ignition pulse to determine the LEH size for ignition-scale hohlraums via LEH closure behavior, and we present convincing evidence from multiple diagnostics at the SGIII facility with ignition-scale hohlraum, laser prepulse, and laser beam size. The LEH closure observed in our experiment is in agreement with data from the National Ignition Facility. The total LEH area of the octahedral hohlraum is found to be very close to that of a cylindrical hohlraum, thus successfully demonstrating the feasibility of the octahedral hohlraum in terms of laser energy, which is crucially important for sizing an ignition-scale octahedrally configured laser system. This work provides a novel way to determine the LEH size of an ignition target at a small-scale laser facility, and it can be applied to other hohlraum configurations for the indirect drive approach.
    Type of Medium: Online Resource
    ISSN: 2468-2047 , 2468-080X
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2022
    detail.hit.zdb_id: 2858469-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: AIP Advances, AIP Publishing, Vol. 9, No. 9 ( 2019-09-01)
    Abstract: In order to study the laser plasma instabilities (LPIs) in the context of some novel six-side laser-driven indirect designs like the six-cylinder-port hohlraum and the three-axis cylindrical hohlraum, where the laser beams inject in hohlraum with a large angle. LPI experiments in cylindrical hohlraum with only outer beams were designed and performed based on the current laser arrangement condition of SGIII laser facility for the first time. Stimulated Brillouin backscatter (SBS) was found to be the dominant instability with high instantaneous reflectivity in experiments. A typical feature was obtained in the time-resolved spectra of SBS, which maintained similar for different laser intensities of the interaction beam. The experimental data are analyzed by the hydrodynamic simulations combined with HLIP code, which is based on the ray-tracing model. By analysis of experimental data, it is argued that the mixture of gas and Au in the region of their interface is important to SBS, which indicates the need for the mixture model between the filled gas and the high Z plasma from hohlraum wall in the hydrodynamic simulations. Nonlinear saturation of SBS as well as the smoothed beam are also discussed here. Our effective considerations of the ions pervasion effect and the smoothed beam provide utilitarian ways for improvement of the current ray-tracing method.
    Type of Medium: Online Resource
    ISSN: 2158-3226
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2019
    detail.hit.zdb_id: 2583909-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Physics of Plasmas, AIP Publishing, Vol. 23, No. 11 ( 2016-11-01)
    Abstract: We describe an experimental technique to measure the drive symmetry of M-band radiation on the capsule in hohlraum. M-band radiation from the corona of the laser-produced gold plasma, especially the laser spot regions in the cavity, was used to pump x-ray fluorescence of a thin layer of Si-tracer coated on a solid CH-ball. The fluorescence images were time resolvedly recorded by an x-ray framing camera and the drive asymmetry due to M-band radiation was deduced from these fluorescence images. Moreover, a Si-doped gold cavity was used with the initial purpose of maximizing the fluorescence signal through resonance transitions. Since the Si-plasma expands more rapidly than the gold-plasma, the evolution of drive asymmetry was accelerated in Si-doped hohlraum.
    Type of Medium: Online Resource
    ISSN: 1070-664X , 1089-7674
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2016
    detail.hit.zdb_id: 1472746-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    AIP Publishing ; 2016
    In:  Matter and Radiation at Extremes Vol. 1, No. 1 ( 2016-01-01), p. 8-27
    In: Matter and Radiation at Extremes, AIP Publishing, Vol. 1, No. 1 ( 2016-01-01), p. 8-27
    Abstract: In this paper, we give a review of our theoretical and experimental progress in octahedral spherical hohlraum study. From our theoretical study, the octahedral spherical hohlraums with 6 Laser Entrance Holes (LEHs) of octahedral symmetry have robust high symmetry during the capsule implosion at hohlraum-to-capsule radius ratio larger than 3.7. In addition, the octahedral spherical hohlraums also have potential superiority on low backscattering without supplementary technology. We studied the laser arrangement and constraints of the octahedral spherical hohlraums, and gave a design on the laser arrangement for ignition octahedral hohlraums. As a result, the injection angle of laser beams of 50°–60° was proposed as the optimum candidate range for the octahedral spherical hohlraums. We proposed a novel octahedral spherical hohlraum with cylindrical LEHs and LEH shields, in order to increase the laser coupling efficiency and improve the capsule symmetry and to mitigate the influence of the wall blowoff on laser transport. We studied on the sensitivity of the octahedral spherical hohlraums to random errors and compared the sensitivity among the octahedral spherical hohlraums, the rugby hohlraums and the cylindrical hohlraums, and the results show that the octahedral spherical hohlraums are robust to these random errors while the cylindrical hohlraums are the most sensitive. Up till to now, we have carried out three experiments on the spherical hohlraum with 2 LEHs on Shenguang(SG) laser facilities, including demonstration of improving laser transport by using the cylindrical LEHs in the spherical hohlraums, spherical hohlraum energetics on the SGIII prototype laser facility, and comparisons of laser plasma instabilities between the spherical hohlraums and the cylindrical hohlraums on the SGIII laser facility.
    Type of Medium: Online Resource
    ISSN: 2468-2047 , 2468-080X
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2016
    detail.hit.zdb_id: 2858469-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Physics of Plasmas, AIP Publishing, Vol. 30, No. 6 ( 2023-06-01)
    Abstract: A record duration of a 310 s H-mode plasma (H98y2 ∼ 1.3, ne/nGW ∼ 0.7, fBS & gt; 50%) has been recently achieved on experimental advanced superconducting tokamak (EAST) with metal walls, exploiting the device's improved long-pulse capabilities. The experiment demonstrates good control of tungsten concentration, core/edge MHD stability, and particle and heat exhaust with an ITER-like tungsten divertor and zero injected torque, establishing a milestone on the path to steady-state long-pulse high-performance scenarios in support of ITER and CFETR. Important synergistic effects are leveraged toward this result, which relies purely on radio frequency (RF) powers for heating and current drive (H & CD). On-axis electron cyclotron heating enhances the H & CD efficiency from lower hybrid wave injection, increasing confinement quality and enabling fully non-inductive operation at high density (ne/nGW ∼ 70%) and high poloidal beta (βP ∼ 2.5). A small-amplitude grassy edge localized mode regime facilitates the RF power coupling to the H-mode edge and reduces divertor sputtering/erosion. The high energy confinement quality (H98y2 ∼ 1.3) is achieved with the experimental and simulated results pointing to the strong effect of Shafranov shift on turbulence. Transport analysis suggests that trapped electron modes dominate in the core region during the record discharge. The detailed physics processes (RF synergy, core-edge integration, confinement properties, etc.) of the steady-state operation will be illustrated in the content. In the future, EAST will aim at accessing more relevant dimensionless parameters to develop long-pulse high-performance plasma toward ITER and CFETR steady-state advanced operation.
    Type of Medium: Online Resource
    ISSN: 1070-664X , 1089-7674
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2023
    detail.hit.zdb_id: 1472746-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...