GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: AIP Advances, AIP Publishing, Vol. 11, No. 7 ( 2021-07-01)
    Abstract: The structural, optical, and photocatalytic properties of TiO2 and Ag–TiO2 thin films grown by a hydrothermal method were studied by using an x-ray diffractometer, scanning electron microscope, energy-dispersive x ray, and UV–vis spectroscopy. The results indicated that all films were of single-phase and the Ag presence enhanced catalytic and water-splitting performances in the visible light region. In particular, the methylene blue solution was disintegrated up to 99% after 12 and 8 h for TiO2 and Ag–TiO2 films, respectively. Meanwhile, the splitting efficiency increased from 0.3% for TiO2 to 1% for Ag–TiO2. These performances demonstrate the great potential of Ag–TiO2 films in photocatalytic and water-splitting applications.
    Type of Medium: Online Resource
    ISSN: 2158-3226
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2021
    detail.hit.zdb_id: 2583909-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Applied Physics, AIP Publishing, Vol. 117, No. 24 ( 2015-06-28)
    Abstract: We numerically and experimentally demonstrated a metamaterial perfect absorber (MPA) in MHz region based on a planar sandwiched metal-dielectric-metal structure. First, the single-peak perfect absorption was obtained at 400 MHz. The ratios of the periodicity of unit cells and the thickness to the absorption wavelength are 1/12 and 1/94, respectively. The advantage of structural design and the mechanism for the low-frequency MPA are described in detail by the comparison between calculation, simulation, and experiment. Influence of the incident angle of electromagnetic (EM) wave for both transverse-electric (TE) and transverse-magnetic (TM) polarization on absorption was also investigated, and the absorption was maintained to be above 95% at incident angles up to 30°. Finally, we propose a self-asymmetric structure, which induces the dual-band perfect absorption in the same range of frequency. The EM behavior of the excitation modes and the mechanism of the dual-band MPA are clearly explained. Especially, when two resonance modes are finely controlled to be close enough, the bandwidth (full width at half maximum) of MPA is enhanced to be nearly wider twice than that in case of single-peak perfect absorption. The enhanced bandwidth is still well preserved by varying the incident angle up to 30° for both TE and TM polarization. The results were also confirmed by both simulation and experiment. Our work is promising for potential practical applications in the radio range, such as radio-frequency shielding devices, single/dual-frequency filters, and switching devices.
    Type of Medium: Online Resource
    ISSN: 0021-8979 , 1089-7550
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2015
    detail.hit.zdb_id: 220641-9
    detail.hit.zdb_id: 3112-4
    detail.hit.zdb_id: 1476463-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: AIP Advances, AIP Publishing, Vol. 12, No. 3 ( 2022-03-01)
    Abstract: The magnetic and absorbing properties of La0.7Sr0.3MnO3 nanoparticles created by ceramic and high-energy ball milling methods were investigated in detail in this study. The x-ray diffraction data show that they belong to a rhombohedral structure with an average crystalline size of ⟨D⟩ = 41 ± 2 nm. The field emission scanning electron microscope image showed that the La0.7Sr0.3MnO3 particles have a pseudo-spherical shape with particle sizes ranging from 20 to 100 nm. The Curie temperature (TC), effective paramagnetic moment, coercivity (Hc), and saturation magnetization (Ms) of the sample were determined using the temperature and magnetic field dependences of the magnetization. It shows that La0.7Sr0.3MnO3 nanoparticles exhibit a soft ferromagnetism with TC = 358 K and Hc ≈ 15 Oe and Ms ≈ 60 emu/g at 300 K. The microwave reflection loss (RL) of La0.7Sr0.3MnO3–paraffin composites with thicknesses t = 1.5–3.5 mm at room temperature was measured at frequencies 4–18 GHz using a vector network analyzer. The largest negative RL values obtained for un-backed and Al-backed samples are about −14.07 dB at 17.97 GHz and −24.87 dB at 14.71 GHz corresponding to the absorbing thicknesses t = 1.5 and 2.0 mm, respectively. These resonant effects are explained by the impedance matching mechanism in the samples.
    Type of Medium: Online Resource
    ISSN: 2158-3226
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2022
    detail.hit.zdb_id: 2583909-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...