GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AIP Publishing  (2)
Material
Publisher
  • AIP Publishing  (2)
Language
Years
  • 1
    Online Resource
    Online Resource
    AIP Publishing ; 2019
    In:  The Journal of Chemical Physics Vol. 151, No. 22 ( 2019-12-14)
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 151, No. 22 ( 2019-12-14)
    Abstract: Occupied and unoccupied electronic structures of submonolayer perylene (C20H12) on a graphite surface have been investigated using two-photon photoemission (2PPE) spectroscopy for two phases at room and low temperatures. Low energy electron diffraction measurements indicated that the molecules are disordered at room temperature and form a well-ordered superstructure below 180 K. In 2PPE, a specific unoccupied peak (Lx) was observed at around room temperature ( & gt;180 K) but not at low temperature ( & lt;180 K). The temperature-dependence of the excitation probability was attributed to a contribution of a diffuse unoccupied state, which is characterized by the molecular orbital extending outside the perylene molecular framework. At around room temperature, perylene adopts a flat-lying molecular orientation so that the diffuse state can hybridize with a free-electron-like unoccupied surface state, image potential states (IPS). As a result, the hybridized Lx state can be excited from the occupied bulk band through the IPS-mediated process. In contrast, hybridization is not efficient in the low-temperature phase due to the standing molecular orientation, which decouples the molecule away from the image plane of the substrate. The size of molecular islands also affects hybridization between the diffuse states and IPS because the two states encounter each other at the edge part of molecular aggregates. The temperature-dependent 2PPE results indicate that the molecular orientation and island size of perylene are directly linked to the formation of hybridized states, and thus, the excitation probability at the interface can be regulated by the morphology on the surface.
    Type of Medium: Online Resource
    ISSN: 0021-9606 , 1089-7690
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2019
    detail.hit.zdb_id: 3113-6
    detail.hit.zdb_id: 1473050-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    AIP Publishing ; 2022
    In:  The Journal of Chemical Physics Vol. 157, No. 7 ( 2022-08-21)
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 157, No. 7 ( 2022-08-21)
    Abstract: Understanding the structure and wettability of monolayer water is essential for revealing the mechanisms of nucleation, growth, and chemical reactivity at interfaces. We have investigated the wetting layer formation of water (ice) on the graphite (0001) surface using a combination of low-energy electron diffraction (LEED) and scanning tunneling microscopy (STM). At around monolayer coverages, the LEED pattern showed a (2 × 2) periodicity and STM revealed a hydrogen-bonded hexagonal network. The lattice constant was about 9% larger than that for ice Ih/Ic crystals, and the packing density was 0.096 Å−2. These results indicate that an extended ice network is formed on graphite, different from that on metal surfaces. Graphite is hydrophobic under ambient conditions due to the airborne contaminant but is considered inherently hydrophilic for a clean surface. In this study, the hydrophilic nature of the clean surface has been investigated from a molecular viewpoint. The formation of a well-ordered commensurate monolayer supports that the interaction of water with graphite is not negligible so that a commensurate wetting layer is formed at the weak substrate–molecule interaction limit.
    Type of Medium: Online Resource
    ISSN: 0021-9606 , 1089-7690
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2022
    detail.hit.zdb_id: 3113-6
    detail.hit.zdb_id: 1473050-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...