GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • AIP Publishing  (3)
Materialart
Verlag/Herausgeber
  • AIP Publishing  (3)
Sprache
Erscheinungszeitraum
Fachgebiete(RVK)
  • 1
    Online-Ressource
    Online-Ressource
    AIP Publishing ; 2022
    In:  Applied Physics Letters Vol. 120, No. 4 ( 2022-01-24)
    In: Applied Physics Letters, AIP Publishing, Vol. 120, No. 4 ( 2022-01-24)
    Kurzfassung: In situ transport measurements on 10-nm-thick epitaxial Cu(001), Co(001), and Rh(001) layers exhibit a characteristic increase in the sheet resistance ΔRs/Ro = 43%, 10%, and 4% when adding 4.0, 13.0, and 13.0 monolayers of Ti, respectively. Similarly, exposing these layers to 0.6 Torr O2 results in a 26%, 22%, and & lt;5% increase in Rs. This suggests that adatoms on Cu and Co surfaces considerably disturb the surface potential, leading to diffuse electron scattering and a resulting resistance increase while these effects are negligible for Rh. A similarly small resistivity increase Δρ/ρ & lt; 7% is measured during air exposure of 10-nm-thick epitaxial layers of electronegative metals including Ru, Rh, Ir, W, and Mo, while Δρ/ρ increases to 11%–36% for more electropositive metals including Cu, Ag, Co, Ni, and Nb. The Δρ for Ni, Co, and Nb is larger than what is expected for a complete transition from specular to diffuse surface scattering, indicating a breakdown of the semiclassical Fuchs–Sondheimer model, which needs to be replaced by a two-dimensional conductor description. The measured inverse correlation between electronegativity and Δρ/ρ suggests that the magnitude of the surface potential perturbation is the primary parameter affecting electron surface scattering in thin metal layers. More specifically, the charge transfer from electropositive metal surfaces to adatoms perturbs the surface potential and causes electron surface scattering and a resistance increase. Conversely, electronegative metals facilitate smooth surface potentials with specular electron reflection and a minimized resistance increase. They are, therefore, promising as conductors for highly scaled interconnect lines.
    Materialart: Online-Ressource
    ISSN: 0003-6951 , 1077-3118
    RVK:
    Sprache: Englisch
    Verlag: AIP Publishing
    Publikationsdatum: 2022
    ZDB Id: 211245-0
    ZDB Id: 1469436-0
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    AIP Publishing ; 2022
    In:  Applied Physics Letters Vol. 120, No. 24 ( 2022-06-13)
    In: Applied Physics Letters, AIP Publishing, Vol. 120, No. 24 ( 2022-06-13)
    Kurzfassung: The electron reflection probability r at symmetric twin boundaries Σ3, Σ5, Σ9, and Σ11 is predicted from first principles for the eight most conductive face-centered cubic (fcc) metals. r increases with decreasing interplanar distance of atomic planes parallel to the boundary. This provides the basis for an extrapolation scheme to estimate the reflection probability rr at random grain boundaries, which is relatively small, rr = 0.28–0.39, for Cu, Ag, and Au due to their nearly spherical Fermi surfaces, but approximately two times higher for Al, Ca, Ni, Rh, and Ir with a predicted rr = 0.61–0.72. The metal resistivity in the limit of small randomly oriented grains with fixed average size is expected to be proportional to the materials benchmark quantity ρoλ × rr/(1 − rr), where ρo and λ are the bulk resistivity and bulk electron mean free path, respectively. Cu has the lowest value for this quantity, indicating that all other fcc metals have a higher resistivity in the limit of small randomly oriented grains. Thus, the conductivity benefit of replacement metals for narrow Cu interconnect lines can only be realized if the grains are larger than the linewidth or exhibit symmetric orientation relationships where r & lt; rr.
    Materialart: Online-Ressource
    ISSN: 0003-6951 , 1077-3118
    RVK:
    Sprache: Englisch
    Verlag: AIP Publishing
    Publikationsdatum: 2022
    ZDB Id: 211245-0
    ZDB Id: 1469436-0
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    AIP Publishing ; 2021
    In:  Journal of Applied Physics Vol. 130, No. 11 ( 2021-09-21)
    In: Journal of Applied Physics, AIP Publishing, Vol. 130, No. 11 ( 2021-09-21)
    Kurzfassung: The resistivity size effect in Ir is quantified with in situ and ex situ transport measurements at 295 and 77 K using epitaxial layers with thickness d = 5–140 nm deposited on MgO(001) and Al2O3(0001) substrates. Data fitting with the Fuchs–Sondheimer model of the measured resistivity ρ vs d for single-crystal Ir(001)/MgO(001) layers deposited at Ts = 1000 °C yield an effective electron mean free path λeff = 7.4 ± 1.2 nm at 295 K, a room-temperature bulk resistivity ρo = 5.2 μΩ cm, and a temperature-independent product ρoλeff = (3.8 ± 0.6)×10−16 Ω m2, which is in good agreement with first-principles predictions. Layers deposited at Ts = 700 °C and stepwise annealed to 1000 °C exhibit a unique polycrystalline multi-domain microstructure with smooth renucleated 111-oriented grains that are & gt;10 μm wide for d = 10 nm, resulting in a 26% lower ρoλeff. Ir(111)/Al2O3(0001) layers exhibit two 60°-rotated epitaxial domains with an average lateral grain size of 88 nm. The grain boundaries cause a thickness-independent resistivity contribution Δρgb = 0.86 ± 0.19 and 0.84 ± 0.12 μΩ cm at 295 and 77 K, indicating an electron reflection coefficient R = 0.52 ± 0.02 for this boundary characterized by a 60° rotation about the ⟨111⟩ axis. The overall results indicate that microstructural features including strain fields from misfit dislocations and/or atomic-level roughness strongly affect the resistivity size effect in Ir. The measured ρoλeff for Ir is smaller than for any other elemental metal and 69%, 43%, and 25% below reported ρoλ products for Co, Cu, and Ru, respectively, indicating that Ir is a promising alternate metal for narrow high-conductivity interconnects.
    Materialart: Online-Ressource
    ISSN: 0021-8979 , 1089-7550
    Sprache: Englisch
    Verlag: AIP Publishing
    Publikationsdatum: 2021
    ZDB Id: 220641-9
    ZDB Id: 3112-4
    ZDB Id: 1476463-5
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...