GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Applied Physics, AIP Publishing, Vol. 118, No. 20 ( 2015-11-28)
    Abstract: We investigated the effects of residual hydrogen in sputtering atmosphere on subgap states and carrier transport in amorphous In-Ga-Zn-O (a-IGZO) using two sputtering systems with different base pressures of ∼10−4 and 10−7 Pa (standard (STD) and ultrahigh vacuum (UHV) sputtering, respectively), which produce a-IGZO films with impurity hydrogen contents at the orders of 1020 and 1019 cm−3, respectively. Several subgap states were observed by hard X-ray photoemission spectroscopy, i.e., peak-shape near-valence band maximum (near-VBM) states, shoulder-shape near-VBM states, peak-shape near-conduction band minimum (near-CBM) states, and step-wise near-CBM states. It was confirmed that the formation of these subgap states were affected strongly by the residual hydrogen (possibly H2O). The step-wise near-CBM states were observed only in the STD films deposited without O2 gas flow and attributed to metallic In. Such step-wise near-CBM state was not detected in the other films including the UHV films even deposited without O2 flow, substantiating that the metallic In is segregated by the strong reduction effect of the hydrogen/H2O. Similarly, the density of the near-VBM states was very high for the STD films deposited without O2. These films had low film density and are consistent with a model that voids in the amorphous structure form a part of the near-VBM states. On the other hand, the UHV films had high film densities and much less near-VBM states, keeping the possibility that some of the near-VBM states, in particular, of the peak-shape ones, originate from –OH and weakly bonded oxygen. These results indicate that 2% of excess O2 flow is required for the STD sputtering to compensate the effects of the residual hydrogen/H2O. The high-density near-VBM states and the metallic In segregation deteriorated the electron mobility to 0.4 cm2/(V s).
    Type of Medium: Online Resource
    ISSN: 0021-8979 , 1089-7550
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2015
    detail.hit.zdb_id: 220641-9
    detail.hit.zdb_id: 3112-4
    detail.hit.zdb_id: 1476463-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: AIP Advances, AIP Publishing, Vol. 6, No. 1 ( 2016-01-01)
    Abstract: Polycrystalline SnS thin films were fabricated by a H2S-free process combing pulsed laser deposition at room temperature and post-deposition thermal annealing in Ar. Thermal annealing improved the crystalline quality of the SnS films and the best films were obtained by 400 °C annealing. The obtained SnS films exhibited p-type conduction with the highest Hall mobility of 28 cm2/(V ⋅ s) and the carrier densities of 1.5 × 1015 – 1.8 × 1016 cm−3. The SnS TFT exhibited p-type operation with a field effect mobility and an on-off drain current ratio of 0.4 cm2/(V ⋅ s) and 20, respectively.
    Type of Medium: Online Resource
    ISSN: 2158-3226
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2016
    detail.hit.zdb_id: 2583909-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Applied Physics Letters, AIP Publishing, Vol. 99, No. 9 ( 2011-08-29)
    Abstract: Operation characteristics of amorphous In-Ga-Zn-O (a-IGZO) thin-film transistors (TFTs) were improved to a subthreshold voltage swing (S) of 217 mV (decade)−1, a mobility of ∼11.4 cm2 (Vs)−1, and a threshold voltage (Vth) of 0.1 V by O3 annealing at a temperature as low as 150 °C. However, the O3 annealing at 300 °C caused serious deterioration and exhibited a bistable transition between a large S state and a large Vth state. This transition is attributed to incorporation of excess oxygen and associated subgap defects with a negative-U characteristic. It also explains why a-IGZO channels deposited at high oxygen pressures do not produce operating TFTs.
    Type of Medium: Online Resource
    ISSN: 0003-6951 , 1077-3118
    RVK:
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2011
    detail.hit.zdb_id: 211245-0
    detail.hit.zdb_id: 1469436-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Applied Physics Letters, AIP Publishing, Vol. 108, No. 17 ( 2016-04-25)
    Abstract: This work presents the solid phase epitaxial growth of high mobility La:BaSnO3 thin films on SrTiO3 single crystal substrates by crystallization through thermal annealing of nanocrystalline thin films prepared by pulsed laser deposition at room temperature. The La:BaSnO3 thin films show high epitaxial quality and Hall mobilities up to 26 ± 1 cm2/Vs. Secondary ion mass spectroscopy is used to determine the La concentration profile in the La:BaSnO3 thin films, and a 9%–16% La doping activation efficiency is obtained. An investigation of H doping to BaSnO3 thin films is presented employing H plasma treatment at room temperature. Carrier concentrations in previously insulating BaSnO3 thin films were increased to 3 × 1019 cm−3 and in La:BaSnO3 thin films from 6 × 1019 cm−3 to 1.5 × 1020 cm−3, supporting a theoretical prediction that interstitial H serves as an excellent n-type dopant. An analysis of the free electron absorption by infrared spectroscopy yields a small (H,La):BaSnO3 electron effective mass of 0.27 ± 0.05 m0 and an optical mobility of 26 ± 7 cm2/Vs. As compared to La:BaSnO3 single crystals, the smaller electron mobility in epitaxial thin films grown on SrTiO3 substrates is ascribed to threading dislocations as observed in high resolution transmission electron micrographs.
    Type of Medium: Online Resource
    ISSN: 0003-6951 , 1077-3118
    RVK:
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2016
    detail.hit.zdb_id: 211245-0
    detail.hit.zdb_id: 1469436-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: AIP Advances, AIP Publishing, Vol. 6, No. 1 ( 2016-01-01)
    Abstract: We propose a light-emitting thin film using an amorphous oxide semiconductor (AOS) because AOS has low defect density even fabricated at room temperature. Eu-doped amorphous In-Ga-Zn-O thin films fabricated at room temperature emitted intense red emission at 614 nm. It is achieved by precise control of oxygen pressure so as to suppress oxygen-deficiency/excess-related defects and free carriers. An electronic structure model is proposed, suggesting that non-radiative process is enhanced mainly by defects near the excited states. AOS would be a promising host for a thin film phosphor applicable to flexible displays as well as to light-emitting transistors.
    Type of Medium: Online Resource
    ISSN: 2158-3226
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2016
    detail.hit.zdb_id: 2583909-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    AIP Publishing ; 2012
    In:  Journal of Applied Physics Vol. 111, No. 7 ( 2012-04-01)
    In: Journal of Applied Physics, AIP Publishing, Vol. 111, No. 7 ( 2012-04-01)
    Abstract: Amorphous In-Ga-Zn-O (a-IGZO) is expected as a backplane transistor material to drive next-generation flat-panel and flexible displays. It has been elucidated that thermal annealing even at low temperatures & lt;200 °C reduces deep subgap defects and those at ≥300 °C further improve device characteristics, stability, and uniformity. These temperatures are much lower than the reported crystallization temperature (TX ∼ 600 °C). In this work, we investigate effects of thermal annealing on the structural and optical properties of a-IGZO thin films. We performed classical molecular dynamics simulation (CMD) and optical interference analyses including spectroscopic ellipsometry (SE). CMD reproduced the x-ray diffraction pattern of a-IGZO and exhibited a glass transition. Experimentally, it was found that TX depends largely on deposition methods and conditions, probably due to different chemical compositions. Sputter-deposited a-IGZO films exhibited onset TX ∼ 600 °C and crystalline volume fraction XC increased linearly from 600 °C. 1.2% of film densification occurred even at & lt;TX, and crystallization caused larger densification, which is consistent with the film density measured by x-ray reflectivity spectroscopy. Bandgap increased in two temperature regions; i.e., (i) at & lt;400 °C due to structural relaxation and (ii) at & gt;600 °C due to crystallization. High-temperature in situ SE measurements did not detect a symptom of a glass transition temperature (Tg) presumably because the TX is close to Tg similar to the case of amorphous metals.
    Type of Medium: Online Resource
    ISSN: 0021-8979 , 1089-7550
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2012
    detail.hit.zdb_id: 220641-9
    detail.hit.zdb_id: 3112-4
    detail.hit.zdb_id: 1476463-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Journal of Applied Physics, AIP Publishing, Vol. 93, No. 5 ( 2003-03-01), p. 2595-2601
    Abstract: A strong enhancement of the Er3+-related 1.54 μm emission was obtained from Er-doped porous silicon (PSi), when host PSi was slightly oxidized before Er incorporation. Separate measurements of the energy transfer and the Auger deexcitation between carriers in Si crystallites of preoxidized PSi and Er3+ ions were measured as functions of the preoxidized time or the thickness of the SiO2 interlayer, and revealed that a 1 nm order thick SiO2 interlayer between Si crystallites and Er3+ ions suppressed the Auger energy backflow strongly with only a moderate decrease of the carrier mediated Er3+ excitation. A thin SiO2 interlayer was also effective at suppressing the phonon-assisted energy backtransfer at high temperatures, leading to a strong room temperature Er3+-related 1.54 μm emission.
    Type of Medium: Online Resource
    ISSN: 0021-8979 , 1089-7550
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2003
    detail.hit.zdb_id: 220641-9
    detail.hit.zdb_id: 3112-4
    detail.hit.zdb_id: 1476463-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Applied Physics Letters, AIP Publishing, Vol. 121, No. 19 ( 2022-11-07)
    Abstract: In this study, we fabricated light-emitting diodes (LEDs) on glass substrates at a maximum process temperature of 200 °C using amorphous oxide semiconductor (AOS) materials as emission layers. Amorphous gallium oxide films doped with rare-earth elements (Eu, Pr, and Tb) were employed as AOS emission layers, and the LEDs emitted clear red, green, and pink luminescence upon direct-current application even in the ambient environment. Resonance photoelectron spectroscopy revealed the difference in the electronic structure of the films for each rare-earth dopant, suggesting different emission mechanisms, viz., electron–hole recombination and impact excitation. Although it is widely believed that amorphous materials are unsuitable for use as emission layers of LEDs because of their high concentrations of mid-gap states and defects, the developed rare-earth-doped AOS materials show good performance as emission layers. This study provides opportunities for the advancement of flexible display technologies operating in harsh environments.
    Type of Medium: Online Resource
    ISSN: 0003-6951 , 1077-3118
    RVK:
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2022
    detail.hit.zdb_id: 211245-0
    detail.hit.zdb_id: 1469436-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...