GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    AIP Publishing ; 2011
    In:  The Journal of Chemical Physics Vol. 134, No. 19 ( 2011-05-21)
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 134, No. 19 ( 2011-05-21)
    Abstract: Quantum coherence between electron and ion dynamics, observed in organic semiconductors by means of ultrafast spectroscopy, is the object of recent theoretical and computational studies. To simulate this kind of quantum coherent dynamics, we have introduced in a previous article [L. Stella, M. Meister, A. J. Fisher, and A. P. Horsfield, J. Chem. Phys. 127, 214104 (2007)]10.1063/1.2801537 an improved computational scheme based on Correlated Electron-Ion Dynamics (CEID). In this article, we provide a generalization of that scheme to model several ionic degrees of freedom and many-body electronic states. To illustrate the capability of this extended CEID, we study a model system which displays the electron-ion analog of the Rabi oscillations. Finally, we discuss convergence and scaling properties of the extended CEID along with its applicability to more realistic problems.
    Type of Medium: Online Resource
    ISSN: 0021-9606 , 1089-7690
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2011
    detail.hit.zdb_id: 3113-6
    detail.hit.zdb_id: 1473050-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 124, No. 21 ( 2006-06-07)
    Abstract: A dynamical method for simulating steady-state conduction in atomic and molecular wires is presented which is both computationally and conceptually simple. The method is tested by calculating the current-voltage spectrum of a simple diatomic molecular junction, for which the static Landauer approach produces multiple steady-state solutions. The dynamical method quantitatively reproduces the static results and provides information on the stability of the different solutions.
    Type of Medium: Online Resource
    ISSN: 0021-9606 , 1089-7690
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2006
    detail.hit.zdb_id: 3113-6
    detail.hit.zdb_id: 1473050-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Review of Scientific Instruments, AIP Publishing, Vol. 83, No. 10 ( 2012-10-01)
    Abstract: The ORION laser facility is one of the UK's premier laser facilities which became operational at AWE in 2010. Its primary mission is one of stockpile stewardship, ORION will extend the UK's experimental plasma physics capability to the high temperature, high density regime relevant to Atomic Weapons Establishment's (AWE) program. The ORION laser combines ten laser beams operating in the ns regime with two sub ps short pulse chirped pulse amplification beams. This gives the UK a unique combined long pulse/short pulse laser capability which is not only available to AWE personnel but also gives access to our international partners and visiting UK academia. The ORION laser facility is equipped with a comprehensive suite of some 45 diagnostics covering optical, particle, and x-ray diagnostics all able to image the laser target interaction point. This paper focuses on a small selection of these diagnostics.
    Type of Medium: Online Resource
    ISSN: 0034-6748 , 1089-7623
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2012
    detail.hit.zdb_id: 209865-9
    detail.hit.zdb_id: 1472905-2
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    AIP Publishing ; 2016
    In:  The Journal of Chemical Physics Vol. 145, No. 14 ( 2016-10-14)
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 145, No. 14 ( 2016-10-14)
    Abstract: To interpret ultrafast dynamics experiments on large molecules, computer simulation is required due to the complex response to the laser field. We present a method capable of efficiently computing the static electronic response of large systems to external electric fields. This is achieved by extending the density-functional tight binding method to include larger basis sets and by multipole expansion of the charge density into electrostatically interacting Gaussian distributions. Polarizabilities for a range of hydrocarbon molecules are computed for a multipole expansion up to quadrupole order, giving excellent agreement with experimental values, with average errors similar to those from density functional theory, but at a small fraction of the cost. We apply the model in conjunction with the polarizable-point-dipoles model to estimate the internal fields in amorphous poly(3-hexylthiophene-2,5-diyl).
    Type of Medium: Online Resource
    ISSN: 0021-9606 , 1089-7690
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2016
    detail.hit.zdb_id: 3113-6
    detail.hit.zdb_id: 1473050-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    AIP Publishing ; 2020
    In:  The Journal of Chemical Physics Vol. 153, No. 23 ( 2020-12-21)
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 153, No. 23 ( 2020-12-21)
    Abstract: The modeling of coupled electron–ion dynamics including a quantum description of the nuclear degrees of freedom has remained a costly and technically difficult practice. The kinetic model for electron–phonon interaction provides an efficient approach to this problem, for systems evolving with low amplitude fluctuations, in a quasi-stationary state. In this work, we propose an extension of the kinetic model to include the effect of coherences, which are absent in the original approach. The new scheme, referred to as Liouville–von Neumann + Kinetic Equation (or LvN + KE), is implemented here in the context of a tight-binding Hamiltonian and employed to model the broadening, caused by the nuclear vibrations, of the electronic absorption bands of an atomic wire. The results, which show close agreement with the predictions given by Fermi’s golden rule (FGR), serve as a validation of the methodology. Thereafter, the method is applied to the electron–phonon interaction in transport simulations, adopting to this end the driven Liouville–von Neumann equation to model open quantum boundaries. In this case, the LvN + KE model qualitatively captures the Joule heating effect and Ohm’s law. It, however, exhibits numerical discrepancies with respect to the results based on FGR, attributable to the fact that the quasi-stationary state is defined taking into consideration the eigenstates of the closed system rather than those of the open boundary system. The simplicity and numerical efficiency of this approach and its ability to capture the essential physics of the electron–phonon coupling make it an attractive route to first-principles electron–ion dynamics.
    Type of Medium: Online Resource
    ISSN: 0021-9606 , 1089-7690
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2020
    detail.hit.zdb_id: 3113-6
    detail.hit.zdb_id: 1473050-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    AIP Publishing ; 2022
    In:  The Journal of Chemical Physics Vol. 156, No. 4 ( 2022-01-28)
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 156, No. 4 ( 2022-01-28)
    Abstract: In this work, we present a novel force-based scheme to perform hybrid quantum mechanics/molecular mechanics (QM/MM) computations. The proposed scheme becomes especially relevant for the simulation of host–guest molecular systems, where the description of the explicit electronic interactions between a guest molecule and a classically described host is of key importance. To illustrate its advantages, we utilize the presented scheme in the geometry optimization of a technologically important host–guest molecular system: a pentacene-doped p-terphenyl crystal, a core component of a room-temperature MASER device. We show that, as opposed to the simpler and widely used hybrid scheme ONIOM, our Quantum-Coupling QM/MM scheme was able to reproduce explicit interactions in the minimum energy configuration for the host–guest complex. We also show that, as a result of these explicit interactions, the host–guest complex exhibits an oriented net electric dipole moment that is responsible for red-shifting the energy of the first singlet–singlet electronic excitation of pentacene.
    Type of Medium: Online Resource
    ISSN: 0021-9606 , 1089-7690
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2022
    detail.hit.zdb_id: 3113-6
    detail.hit.zdb_id: 1473050-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    AIP Publishing ; 2023
    In:  The Journal of Chemical Physics Vol. 158, No. 14 ( 2023-04-14)
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 158, No. 14 ( 2023-04-14)
    Abstract: Real time modeling of fluorescence with vibronic resolution entails the representation of the light–matter interaction coupled to a quantum-mechanical description of the phonons and is therefore a challenging problem. In this work, taking advantage of the difference in timescales characterizing internal conversion and radiative relaxation—which allows us to decouple these two phenomena by sequentially modeling one after the other—we simulate the electron dynamics of fluorescence through a master equation derived from the Redfield formalism. Moreover, we explore the use of a recent semiclassical dissipative equation of motion [C. M. Bustamante et al., Phys. Rev. Lett. 126, 087401 (2021)], termed coherent electron electric-field dynamics (CEED), to describe the radiative stage. By comparing the results with those from the full quantum-electrodynamics treatment, we find that the semiclassical model does not reproduce the right amplitudes in the emission spectra when the radiative process involves the de-excitation to a manifold of closely lying states. We argue that this flaw is inherent to any mean-field approach and is the case with CEED. This effect is critical for the study of light–matter interaction, and this work is, to our knowledge, the first one to report this problem. We note that CEED reproduces the correct frequencies in agreement with quantum electrodynamics. This is a major asset of the semiclassical model, since t he emission peak positions will be predicted correctly without any prior assumption about the nature of the molecular Hamiltonian. This is not so for the quantum electrodynamics approach, where access to the spectral information relies on knowledge of the Hamiltonian eigenvalues.
    Type of Medium: Online Resource
    ISSN: 0021-9606 , 1089-7690
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2023
    detail.hit.zdb_id: 3113-6
    detail.hit.zdb_id: 1473050-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    AIP Publishing ; 2017
    In:  The Journal of Chemical Physics Vol. 147, No. 4 ( 2017-07-28)
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 147, No. 4 ( 2017-07-28)
    Abstract: Computer simulations are invaluable for the study of ultrafast phenomena, as they allow us to directly access the electron dynamics. We present an efficient method for simulating the evolution of electrons in molecules under the influence of time-dependent electric fields, based on the Gaussian tight binding model. This model improves upon standard self-charge-consistent tight binding by the inclusion of polarizable orbitals and a self-consistent description of charge multipoles. Using the examples of bithiophene, terthiophene, and tetrathiophene, we show that this model produces electrostatic, electrodynamic, and explicitly time-dependent properties in strong agreement with density-functional theory, but at a small fraction of the cost.
    Type of Medium: Online Resource
    ISSN: 0021-9606 , 1089-7690
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2017
    detail.hit.zdb_id: 3113-6
    detail.hit.zdb_id: 1473050-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 160, No. 21 ( 2024-06-07)
    Abstract: Static and time-dependent quantum-mechanical approaches have been employed in the literature to characterize the physics of light-emitting molecules and nanostructures. However, the electromagnetic emission induced by an input current has remained beyond the realm of molecular simulations. This is the challenge addressed here with the help of an equation of motion for the density matrix coupled to a photon bath based on a Redfield formulation. This equation is evolved within the framework of the driven-Liouville von Neumann approach, which incorporates open boundaries by introducing an applied bias and a circulating current. The dissipated electromagnetic power can be computed in this context from the time derivative of the energy. This scheme is applied in combination with a self-consistent tight-binding Hamiltonian to investigate the effects of bias and molecular size on the electroluminescence of metallic and semiconducting chains. For the latter, a complex interplay between bias and molecular length is observed: there is an optimal number of atoms that maximizes the emitted power at high voltages but not at low ones. This unanticipated behavior can be understood in terms of the band bending produced along the semiconducting chain, a phenomenon that is captured by the self-consistency of the method. A simple analytical model is proposed that explains the main features revealed by the simulations. The methodology, applied here at a self-consistent tight-binding level but extendable to more sophisticated Hamiltonians such as density functional tight binding and time dependent density functional theory, promises to be helpful for quantifying the power and quantum efficiency of nanoscale electroluminescent devices.
    Type of Medium: Online Resource
    ISSN: 0021-9606 , 1089-7690
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2024
    detail.hit.zdb_id: 3113-6
    detail.hit.zdb_id: 1473050-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...