GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Applied Physics, AIP Publishing, Vol. 129, No. 8 ( 2021-02-28)
    Abstract: Polar domain walls are currently at the focus of intensive research owing to their unusual and highly localized functional properties, which bear great potential for technological applications. They can present unusual topological features, like swirling polar structures or defect lines. The prediction of possible non-Ising and chiral internal structures of polar domain walls has been a particularly important development in this topic over the past years. This Tutorial highlights the capabilities of non-linear optics to probe these newly discovered aspects in polar non-Ising type domain walls through the second-harmonic generation (SHG) process. Fundamental symmetry properties of domain walls are presented in the context of recent advances on chiral and abnormal polar structures. We introduce the basics of the SHG and its ability to probe the symmetry down to the nanoscale, and we explain how to obtain insight into the non-Ising character of polar domain walls by combining the SHG polarimetry analysis with modeling.
    Type of Medium: Online Resource
    ISSN: 0021-8979 , 1089-7550
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2021
    detail.hit.zdb_id: 220641-9
    detail.hit.zdb_id: 3112-4
    detail.hit.zdb_id: 1476463-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    AIP Publishing ; 2007
    In:  Journal of Applied Physics Vol. 101, No. 9 ( 2007-05-01)
    In: Journal of Applied Physics, AIP Publishing, Vol. 101, No. 9 ( 2007-05-01)
    Abstract: Dynamic properties of arrays of rectangular bars were studied employing network analyzer ferromagnetic resonance and time-resolved magneto-optic Kerr effect (MOKE) measurements. The bars were patterned on top of coplanar waveguides and oriented with their long axis either parallel or perpendicular to the external magnetic field. Orientation of the bars parallel to the field results in an increase in the resonant frequency by up to ∼2GHz, as well as the linewidth broadening by 0.3–1GHz. The shift is shown to be in agreement with results expected from the difference of demagnetizing factors. The general behavior of the linewidth corresponds to calculations including shape anisotropy; however, the experimentally measured effect is much stronger than expected from theory. Fourier transforms of the time-resolved MOKE signal reveal the presence of several oscillatory modes, associated with the dynamics in the central part and at the borders of ferromagnetic elements.
    Type of Medium: Online Resource
    ISSN: 0021-8979 , 1089-7550
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2007
    detail.hit.zdb_id: 220641-9
    detail.hit.zdb_id: 3112-4
    detail.hit.zdb_id: 1476463-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    AIP Publishing ; 2021
    In:  Applied Physics Letters Vol. 118, No. 21 ( 2021-05-24)
    In: Applied Physics Letters, AIP Publishing, Vol. 118, No. 21 ( 2021-05-24)
    Abstract: Recent progress in nanofabrication has led to the emergence of three-dimensional magnetic nanostructures as a vibrant field of research. This includes the study of three-dimensional arrays of interconnected magnetic nanowires with tunable artificial spin-ice properties. Prominent examples of such structures are magnetic buckyball nanoarchitectures, which consist of ferromagnetic nanowires connected at vertex positions corresponding to those of a C60 molecule. These structures can be regarded as prototypes for the study of the transition from two- to three-dimensional spin-ice lattices. In spite of their significance for three-dimensional nanomagnetism, little is known about the micromagnetic properties of buckyball nanostructures. By means of finite-element micromagnetic simulations, we investigate the magnetization structures and the hysteretic properties of several sub-micron-sized magnetic buckyballs. Similar to ordinary artificial spin-ice lattices, the array can be magnetized in a variety of zero-field states with vertices exhibiting different degrees of magnetic frustration. Remarkably, and unlike planar geometries, magnetically frustrated states can be reversibly created and dissolved by applying an external magnetic field. This easiness to insert and remove defect-like magnetic charges, made possible by the angle-selectivity of the field-induced switching of individual nanowires, demonstrates a potentially significant advantage of three-dimensional nanomagnetism compared to planar geometries. The control provided by the ability to switch between ice-rule obeying and magnetically frustrated structures could be an important feature of future applications, including magnonic devices exploiting differences in the fundamental frequencies of these configurations.
    Type of Medium: Online Resource
    ISSN: 0003-6951 , 1077-3118
    RVK:
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2021
    detail.hit.zdb_id: 211245-0
    detail.hit.zdb_id: 1469436-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    AIP Publishing ; 2022
    In:  APL Materials Vol. 10, No. 8 ( 2022-08-01)
    In: APL Materials, AIP Publishing, Vol. 10, No. 8 ( 2022-08-01)
    Abstract: Artificially fabricated three-dimensional magnetic nanostructures have recently emerged as a new type of magnetic material with the potential of displaying physical properties absent in thin-film geometries. Interconnected nanowire arrays yielding three-dimensional versions of artificial spin-ices are of particular interest within this material category. Despite growing interest in the topic, several properties of these systems are still unexplored. Here, we study, through micromagnetic simulations, the high-frequency dynamic modes developing in buckyball-type magnetic nanoarchitectures. We obtain a characteristic excitation spectrum and analyze the corresponding mode profiles and their magnetic field dependence. The magnetic resonances are localized at different geometric constituents of the structure and depend on the local magnetic configuration. These features foreshow the potential of such systems for reprogrammable magnonic device applications with geometrically tunable frequencies.
    Type of Medium: Online Resource
    ISSN: 2166-532X
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2022
    detail.hit.zdb_id: 2722985-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    AIP Publishing ; 2023
    In:  Journal of Applied Physics Vol. 133, No. 3 ( 2023-01-21)
    In: Journal of Applied Physics, AIP Publishing, Vol. 133, No. 3 ( 2023-01-21)
    Abstract: We present efficient numerical methods for the simulation of small magnetization oscillations in three-dimensional micromagnetic systems. Magnetization dynamics is described by the Landau–Lifshitz–Gilbert equation, linearized in the frequency domain around a generic equilibrium configuration, and formulated in a special operator form that allows leveraging large-scale techniques commonly used to evaluate the effective field in time-domain micromagnetic simulations. By using this formulation, we derive numerical algorithms to compute the free magnetization oscillations (i.e., spin wave eigenmodes) as well as magnetization oscillations driven by ac radio-frequency fields for arbitrarily shaped nanomagnets. Moreover, semi-analytical perturbation techniques based on the computation of a reduced set of eigenmodes are provided for fast evaluation of magnetization frequency response and absorption spectra as a function of damping and ac field. We present both finite-difference and finite-element implementations and demonstrate their effectiveness on a test case. These techniques open the possibility to study generic magnonic systems discretized with several hundred thousands (or even millions) of computational cells in a reasonably short time.
    Type of Medium: Online Resource
    ISSN: 0021-8979 , 1089-7550
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2023
    detail.hit.zdb_id: 220641-9
    detail.hit.zdb_id: 3112-4
    detail.hit.zdb_id: 1476463-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    AIP Publishing ; 2001
    In:  Journal of Applied Physics Vol. 90, No. 11 ( 2001-12-01), p. 5752-5758
    In: Journal of Applied Physics, AIP Publishing, Vol. 90, No. 11 ( 2001-12-01), p. 5752-5758
    Abstract: Magnetic structures and magnetization processes in arrays of closely packed Ni nanowires (length l=1 μm, diameter d=40 nm, and period: 100 nm) are investigated by means of micromagnetic modelling. The simulations are performed with an algorithm based on the finite element method combined with the boundary element method which allows for the accurate calculation of magnetostatic interactions. Magnetization states of Ni nanowires at zero field are calculated. Only few, simple magnetization configurations result to be stable. Transient states of the magnetization indicate that magnetization reversal occurs by means of nucleation at the ends of the particles and subsequent soliton propagation. Hysteresis loops of up to 16 interacting nanowires are simulated. It turns out that magnetostatic interactions between the wires have a significant influence on the switching field.
    Type of Medium: Online Resource
    ISSN: 0021-8979 , 1089-7550
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2001
    detail.hit.zdb_id: 220641-9
    detail.hit.zdb_id: 3112-4
    detail.hit.zdb_id: 1476463-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Applied Physics Letters, AIP Publishing, Vol. 99, No. 12 ( 2011-09-19)
    Abstract: We report on a micromagnetic study on domain wall (DW) propagation in ferromagnetic nanotubes. It is found that DWs in a tubular geometry are much more robust than ones in flat strips. This is explained by topological considerations. Our simulations show that the Walker breakdown of the DW can be completely suppressed. Constant DW velocities above 1000 m/s are achieved by small fields. A different velocity barrier of the DW propagation is encountered, which significantly reduces the DW mobility. This effect occurs as the DW reaches the phase velocity of spin waves (SWs), thereby triggering a Cherenkov-like emission of SWs.
    Type of Medium: Online Resource
    ISSN: 0003-6951 , 1077-3118
    RVK:
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2011
    detail.hit.zdb_id: 211245-0
    detail.hit.zdb_id: 1469436-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    AIP Publishing ; 1999
    In:  Journal of Applied Physics Vol. 85, No. 8 ( 1999-04-15), p. 6190-6192
    In: Journal of Applied Physics, AIP Publishing, Vol. 85, No. 8 ( 1999-04-15), p. 6190-6192
    Abstract: Magnetic domain states of a permalloy prism 1 μm×500 nm×250 nm are calculated by means of three-dimensional finite element modeling. We obtain the four-domain Landau structure and the seven-domain “diamond” structure by using different starting conditions. Both domain patterns are sheared on the surfaces. This shearing is attributed to bulk effects of the magnetic structure. As an example, the role of head-to-head domain walls in the diamond structure is discussed. Adaptive mesh refinement methods are used to minimize the discretization errors.
    Type of Medium: Online Resource
    ISSN: 0021-8979 , 1089-7550
    Language: English
    Publisher: AIP Publishing
    Publication Date: 1999
    detail.hit.zdb_id: 220641-9
    detail.hit.zdb_id: 3112-4
    detail.hit.zdb_id: 1476463-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    AIP Publishing ; 2012
    In:  Applied Physics Letters Vol. 100, No. 25 ( 2012-06-18), p. 252401-
    In: Applied Physics Letters, AIP Publishing, Vol. 100, No. 25 ( 2012-06-18), p. 252401-
    Type of Medium: Online Resource
    ISSN: 0003-6951 , 1077-3118
    RVK:
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2012
    detail.hit.zdb_id: 211245-0
    detail.hit.zdb_id: 1469436-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...